An effective hybrid approach of gene selection and classification for microarray data based on clustering and particle swarm optimisation

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-08-01 DOI:10.1504/IJDMB.2015.071515
Fei Han, Shanxiu Yang, Jian Guan
{"title":"An effective hybrid approach of gene selection and classification for microarray data based on clustering and particle swarm optimisation","authors":"Fei Han, Shanxiu Yang, Jian Guan","doi":"10.1504/IJDMB.2015.071515","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid approach based on clustering and Particle Swarm Optimisation (PSO) is proposed to perform gene selection and classification for microarray data. In the new method, firstly, genes are partitioned into a predetermined number of clusters by K-means method. Since the genes in each cluster have much redundancy, Max-Relevance Min-Redundancy (mRMR) strategy is used to reduce redundancy of the clustered genes. Then, PSO is used to perform further gene selection from the remaining clustered genes. Because of its better generalisation performance with much faster convergence rate than other learning algorithms for neural networks, Extreme Learning Machine (ELM) is chosen to evaluate candidate gene subsets selected by PSO and perform samples classification in this study. The proposed method selects less redundant genes as well as increases prediction accuracy and its efficiency and effectiveness are verified by extensive comparisons with other classical methods on three open microarray data.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"33 1","pages":"103-21"},"PeriodicalIF":0.2000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071515","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071515","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a hybrid approach based on clustering and Particle Swarm Optimisation (PSO) is proposed to perform gene selection and classification for microarray data. In the new method, firstly, genes are partitioned into a predetermined number of clusters by K-means method. Since the genes in each cluster have much redundancy, Max-Relevance Min-Redundancy (mRMR) strategy is used to reduce redundancy of the clustered genes. Then, PSO is used to perform further gene selection from the remaining clustered genes. Because of its better generalisation performance with much faster convergence rate than other learning algorithms for neural networks, Extreme Learning Machine (ELM) is chosen to evaluate candidate gene subsets selected by PSO and perform samples classification in this study. The proposed method selects less redundant genes as well as increases prediction accuracy and its efficiency and effectiveness are verified by extensive comparisons with other classical methods on three open microarray data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类和粒子群优化的基因选择与分类的有效混合方法
本文提出了一种基于聚类和粒子群优化(PSO)的混合方法对微阵列数据进行基因选择和分类。该方法首先利用K-means方法将基因划分为预定数量的聚类;由于每个聚类中的基因具有较大的冗余度,采用最大相关最小冗余度(mRMR)策略来降低聚类基因的冗余度。然后,利用粒子群算法从剩余的聚类基因中进行进一步的基因选择。由于极限学习机(Extreme learning Machine, ELM)具有比其他神经网络学习算法更好的泛化性能和更快的收敛速度,本研究选择极限学习机(Extreme learning Machine, ELM)对粒子群算法选择的候选基因子集进行评估并进行样本分类。通过与其他经典方法在三个开放芯片数据上的广泛比较,验证了该方法的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1