Cuckoo search optimisation for feature selection in cancer classification: a new approach

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-09-01 DOI:10.1504/IJDMB.2015.072092
C. Gunavathi, K. Premalatha
{"title":"Cuckoo search optimisation for feature selection in cancer classification: a new approach","authors":"C. Gunavathi, K. Premalatha","doi":"10.1504/IJDMB.2015.072092","DOIUrl":null,"url":null,"abstract":"Cuckoo Search (CS) optimisation algorithm is used for feature selection in cancer classification using microarray gene expression data. Since the gene expression data has thousands of genes and a small number of samples, feature selection methods can be used for the selection of informative genes to improve the classification accuracy. Initially, the genes are ranked based on T-statistics, Signal-to-Noise Ratio (SNR) and F-statistics values. The CS is used to find the informative genes from the top-m ranked genes. The classification accuracy of k-Nearest Neighbour (kNN) technique is used as the fitness function for CS. The proposed method is experimented and analysed with ten different cancer gene expression datasets. The results show that the CS gives 100% average accuracy for DLBCL Harvard, Lung Michigan, Ovarian Cancer, AML-ALL and Lung Harvard2 datasets and it outperforms the existing techniques in DLBCL outcome and prostate datasets.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 3 1","pages":"248-65"},"PeriodicalIF":0.2000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.072092","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.072092","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 35

Abstract

Cuckoo Search (CS) optimisation algorithm is used for feature selection in cancer classification using microarray gene expression data. Since the gene expression data has thousands of genes and a small number of samples, feature selection methods can be used for the selection of informative genes to improve the classification accuracy. Initially, the genes are ranked based on T-statistics, Signal-to-Noise Ratio (SNR) and F-statistics values. The CS is used to find the informative genes from the top-m ranked genes. The classification accuracy of k-Nearest Neighbour (kNN) technique is used as the fitness function for CS. The proposed method is experimented and analysed with ten different cancer gene expression datasets. The results show that the CS gives 100% average accuracy for DLBCL Harvard, Lung Michigan, Ovarian Cancer, AML-ALL and Lung Harvard2 datasets and it outperforms the existing techniques in DLBCL outcome and prostate datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杜鹃搜索优化在癌症分类中的特征选择:一种新方法
利用微阵列基因表达数据,采用布谷鸟搜索(CS)优化算法进行肿瘤分类特征选择。由于基因表达数据有数千个基因,样本数量少,因此可以使用特征选择方法来选择信息量大的基因,以提高分类精度。首先,根据t统计量、信噪比(SNR)和f统计值对基因进行排序。CS用于从排名前m位的基因中寻找信息基因。使用k-最近邻(kNN)技术的分类精度作为CS的适应度函数。用十种不同的癌症基因表达数据集对该方法进行了实验和分析。结果表明,CS对DLBCL Harvard、Lung Michigan、Ovarian Cancer、AML-ALL和Lung Harvard2数据集的平均准确率为100%,并且在DLBCL结局和前列腺数据集上优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1