Performance analysis of CNN fusion based brain tumour detection using Chan-Vese and level set segmentation algorithms

K. Babu, P. V. Nagajaneyulu, K. Prasad
{"title":"Performance analysis of CNN fusion based brain tumour detection using Chan-Vese and level set segmentation algorithms","authors":"K. Babu, P. V. Nagajaneyulu, K. Prasad","doi":"10.1504/IJSISE.2020.10036203","DOIUrl":null,"url":null,"abstract":"Early diagnosis of a brain tumour may increase life expectancy. Magnetic resonance imaging (MRI) accompanied by several segmentation algorithms is preferred as a reliable method for assessment. In this study, first noise removed by median filter and dimensionality of datasets reduced by using random projection transformation (RPT). Next, the pre-processed images are clustered by using K-means and fuzzy c-means (FCM). In the very next step, the clustered images multi-features are fused by different data fusion approaches, and then segment the exact tumour area by using the active contour models such as level set method (LSM) and Chan-Vese (C-V). The performance of clustered based segmentation and fusion-based segmentation in terms of various fusion metrics. The results of both clustered based and fusion-based methods revealed that the CNN fusion-based segmentation performs better than clustered- based segmentation to detect the tumour with low segmentation error and minimal loss of information.","PeriodicalId":56359,"journal":{"name":"International Journal of Signal and Imaging Systems Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Signal and Imaging Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSISE.2020.10036203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 19

Abstract

Early diagnosis of a brain tumour may increase life expectancy. Magnetic resonance imaging (MRI) accompanied by several segmentation algorithms is preferred as a reliable method for assessment. In this study, first noise removed by median filter and dimensionality of datasets reduced by using random projection transformation (RPT). Next, the pre-processed images are clustered by using K-means and fuzzy c-means (FCM). In the very next step, the clustered images multi-features are fused by different data fusion approaches, and then segment the exact tumour area by using the active contour models such as level set method (LSM) and Chan-Vese (C-V). The performance of clustered based segmentation and fusion-based segmentation in terms of various fusion metrics. The results of both clustered based and fusion-based methods revealed that the CNN fusion-based segmentation performs better than clustered- based segmentation to detect the tumour with low segmentation error and minimal loss of information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于can - vese和水平集分割算法的CNN融合脑肿瘤检测性能分析
脑肿瘤的早期诊断可以延长预期寿命。磁共振成像(MRI)与几种分割算法作为可靠的评估方法是首选的。本研究首先采用中值滤波去除噪声,并采用随机投影变换(RPT)对数据集进行降维。然后,利用k均值和模糊c均值(FCM)对预处理后的图像进行聚类。下一步,通过不同的数据融合方法对聚类图像的多特征进行融合,然后利用水平集法(LSM)和c - vese (C-V)等活动轮廓模型对肿瘤区域进行精确分割。分析了基于聚类和基于融合的图像分割在不同融合指标下的性能。基于聚类方法和基于融合方法的结果表明,基于CNN融合的分割方法在检测肿瘤方面优于基于聚类的分割方法,且分割误差低,信息丢失最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Image correlation, non-uniformly sampled rotation displacement measurement estimation Computational simulation of human fovea Syntactic approach to reconstruct simple and complex medical images Computational simulation of human fovea Syntactic approach to reconstruct simple and complex medical images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1