{"title":"Dynamic modelling and parametric optimisation of vibro-acoustic responses for power-split hybrid transmission","authors":"Han Guo, Jianwu Zhang, Haisheng Yu","doi":"10.1504/ijehv.2020.10025989","DOIUrl":null,"url":null,"abstract":"In this paper, vibro-impact induced gear whine radiated by full hybrid transmission equipped with a multi-mesh gear train is investigated. For accurate simulations of the reducer gear vibrations, an integrated dynamic model of the transmission is established using professional software MASTA, on which compliance effects of gear pairs, bearings, transmission shafts and gearbox housing are counted for. Numerical analyses are carried out for dynamic responses of the hybrid transmission. Bench tests are also conducted for the present model validation. Computational effort is made to recognise parametrically resonant patterns that cause gear whine in experiment. An optimal tooth modification design is presented for the real multi-mesh gear train. It is shown by test results using the optimised reducer that gear whine responses of the gearboxes are considerably improved.","PeriodicalId":43639,"journal":{"name":"International Journal of Electric and Hybrid Vehicles","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijehv.2020.10025989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, vibro-impact induced gear whine radiated by full hybrid transmission equipped with a multi-mesh gear train is investigated. For accurate simulations of the reducer gear vibrations, an integrated dynamic model of the transmission is established using professional software MASTA, on which compliance effects of gear pairs, bearings, transmission shafts and gearbox housing are counted for. Numerical analyses are carried out for dynamic responses of the hybrid transmission. Bench tests are also conducted for the present model validation. Computational effort is made to recognise parametrically resonant patterns that cause gear whine in experiment. An optimal tooth modification design is presented for the real multi-mesh gear train. It is shown by test results using the optimised reducer that gear whine responses of the gearboxes are considerably improved.
期刊介绍:
IJEHV provides a high quality, fully refereed international forum in the field of electric and hybrid automotive systems, including in-vehicle electricity production such as hydrogen fuel cells, to describe innovative solutions for the technical challenges enabling these new propulsion technologies.