Optimal location of laminated beech production plants within the solid hardwood supply network in Austria

IF 1.7 3区 农林科学 Q2 FORESTRY Silva Fennica Pub Date : 2019-01-01 DOI:10.14214/SF.10074
Sebastian Kühle, A. Teischinger, M. Gronalt
{"title":"Optimal location of laminated beech production plants within the solid hardwood supply network in Austria","authors":"Sebastian Kühle, A. Teischinger, M. Gronalt","doi":"10.14214/SF.10074","DOIUrl":null,"url":null,"abstract":"Due to changes in forest management in various European countries, hardwood forest areas and amounts will increase. Sustainable and individual utilization concepts have to be developed for the upcoming available resource. Studies conclude that there is low potential for hardwoods in the traditional appearance market thus the application areas have to be extended to new structural innovative products. This paper examines the extension to a future laminated beech wood supply network which would be a combination of already existing and new production facilities. For a better future use of hardwood raw materials it is necessary to consider the entire supply chain. This also better shows a total hardwood value chain. Therefore, this paper provides data to the solid hardwood business and develops a mixed integer linear programming to design a laminated beech wood supply network. The model is applied to Austria as the sample region. It covers the important strategic decisions where to locate a downstream facility within the existing production network with the lowest supply network cost. Fourteen scenarios are developed to examine various future network configurations. Results about optimal material flows and used sawmills as well as downstream production facilities are presented in form of material and financial performances. Two optimal laminated beech production locations are determined by the calculated scenarios results, and the impact of a new sawmill is analyzed which is focused on beech.","PeriodicalId":49520,"journal":{"name":"Silva Fennica","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silva Fennica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14214/SF.10074","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 5

Abstract

Due to changes in forest management in various European countries, hardwood forest areas and amounts will increase. Sustainable and individual utilization concepts have to be developed for the upcoming available resource. Studies conclude that there is low potential for hardwoods in the traditional appearance market thus the application areas have to be extended to new structural innovative products. This paper examines the extension to a future laminated beech wood supply network which would be a combination of already existing and new production facilities. For a better future use of hardwood raw materials it is necessary to consider the entire supply chain. This also better shows a total hardwood value chain. Therefore, this paper provides data to the solid hardwood business and develops a mixed integer linear programming to design a laminated beech wood supply network. The model is applied to Austria as the sample region. It covers the important strategic decisions where to locate a downstream facility within the existing production network with the lowest supply network cost. Fourteen scenarios are developed to examine various future network configurations. Results about optimal material flows and used sawmills as well as downstream production facilities are presented in form of material and financial performances. Two optimal laminated beech production locations are determined by the calculated scenarios results, and the impact of a new sawmill is analyzed which is focused on beech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叠层山毛榉生产工厂在奥地利实心硬木供应网络中的最佳位置
由于欧洲各国森林管理的变化,阔叶林的面积和数量将会增加。必须为即将获得的资源制订可持续和个人利用的概念。研究得出结论,传统外观市场的硬木潜力不大,因此应用领域必须扩展到新的结构创新产品。本文探讨了未来层压山毛榉木材供应网络的扩展,该网络将是现有和新生产设施的结合。为了更好地利用硬木原料,有必要考虑整个供应链。这也更好地展示了整个硬木价值链。因此,本文为实心硬木企业提供数据,并发展混合整数线性规划来设计层叠山毛榉木材供应网络。该模型以奥地利为样本地区。它涵盖了在现有生产网络中以最低供应网络成本定位下游设施的重要战略决策。开发了14个场景来检查各种未来的网络配置。优化的物料流和使用的锯木厂以及下游生产设施的结果以材料和财务绩效的形式呈现。根据计算结果确定了两个最优的层压山毛榉生产地点,并以山毛榉为重点分析了新建锯木厂的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Silva Fennica
Silva Fennica 农林科学-林学
CiteScore
3.50
自引率
11.10%
发文量
21
审稿时长
3 months
期刊介绍: Silva Fennica publishes significant new knowledge on forest sciences. The scope covers research on forestry and forest ecosystems. Silva Fennica aims to increase understanding on forest ecosystems, and sustainable use and conservation of forest resources. Use of forest resources includes all aspects of forestry containing biomass-based and non-timber products, economic and social factors etc.
期刊最新文献
Passion for science Effect of arginine-phosphate addition on early survival and growth of Scots pine, Norway spruce and silver birch Forest management in northern Fennoscandia: the need for solutions that mitigate conflicts during forest regeneration and increase the use of continuous cover forestry Changing climatic drivers of European spruce bark beetle outbreaks: a comparison of locations around the Northern Baltic Sea Within-site adaptation: Growth and mortality of Norway spruce, Scots pine and Silver birch seedlings in different planting positions across a soil moisture gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1