The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing

G. Huang, M. Zhang, Hua Guo, Xipeng Xu
{"title":"The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing","authors":"G. Huang, M. Zhang, Hua Guo, Xipeng Xu","doi":"10.1504/IJAT.2017.10010198","DOIUrl":null,"url":null,"abstract":"The present study alters the temperature characteristics during high-frequency induction brazing of diamond grits and investigates their effects on the properties of the diamond/brazing alloy interface. The high-frequency induction brazing was conducted in a vacuum using Ni-Cr as active filler alloy. An active temperature range was identified for the brazing of high-quality diamond tools. This temperature range, coupled with long heating time, favours the wetting of filler alloy to diamonds, and the chemical reactions and element diffusion at the diamond/alloy interface, but reduces the static compressive strength of the diamonds. If the temperature is slowly raised, the protrusion height and location of brazed diamonds can be more precisely controlled. Brazed diamonds with 30%-50% protrusion are optimal for cutting.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":"8 1","pages":"133"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2017.10010198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

The present study alters the temperature characteristics during high-frequency induction brazing of diamond grits and investigates their effects on the properties of the diamond/brazing alloy interface. The high-frequency induction brazing was conducted in a vacuum using Ni-Cr as active filler alloy. An active temperature range was identified for the brazing of high-quality diamond tools. This temperature range, coupled with long heating time, favours the wetting of filler alloy to diamonds, and the chemical reactions and element diffusion at the diamond/alloy interface, but reduces the static compressive strength of the diamonds. If the temperature is slowly raised, the protrusion height and location of brazed diamonds can be more precisely controlled. Brazed diamonds with 30%-50% protrusion are optimal for cutting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频感应钎焊中温度曲线对金刚石/Ni-Cr界面性能的影响
研究了金刚石磨粒高频感应钎焊过程中温度特性的变化及其对金刚石/钎焊合金界面性能的影响。采用镍铬合金作为活性钎料,在真空条件下进行高频感应钎焊。确定了高质量金刚石工具钎焊的有效温度范围。该温度范围加上较长的加热时间有利于填充合金对金刚石的润湿,有利于金刚石/合金界面的化学反应和元素扩散,但降低了金刚石的静态抗压强度。如果慢慢升高温度,则可以更精确地控制钎焊金刚石的突出高度和位置。钎焊金刚石的突出度为30%-50%,最适合切割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
期刊最新文献
A modeling study of grinding force for axial feed machining of Si3N4-diamond grinding wheel endface based on specific chip energy Experimental study on plunge-cut internal cylindrical electrolysis grinding processing of bearing ring Experimental study on the processing of sapphire with a free-abrasive assisted fixed-abrasive lapping plate Investigation on Workpiece Microstructure and Wheel Performance on Grinding Titanium Metal Matrix Composites Modelling of Material Removal in Unidirectional Abrasive Flow Machining process using Classical Indentation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1