{"title":"Optimal placement and sizing of distributed generation in an unbalance distribution system using grey wolf optimisation method","authors":"Arjun Tyagi, Ashu Verma, L. Panwar","doi":"10.1504/IJPEC.2018.10009642","DOIUrl":null,"url":null,"abstract":"The distributed generation sources (DGs) are becoming increasingly attractive due to introduction of small scale renewable energy sources. They can be integrated in to low voltage distribution networks, to reduce the burden on transmission and sub transmission network. However, the number of DGs, their placement, and sizing can influence the advantages from the distribution network operation point of view. Also, most of the time the planning is done considering the peak load demand only. However, the losses obtained at peak load, may not give the realistic picture. This paper demonstrates the application of a grey wolf optimisation method for obtaining the optimal size and location of DGs (solar photovoltaic-based) in an unbalanced distribution network. The method proposed in this paper provides a set of solutions from the point of view of voltage stability enhancement and loss minimisation. The utility can prioritise either voltage stability enhancement or loss minimisation or both to choose the best compromised solution. Moreover, the losses are calculated by considering the seasonal load and PV generation patterns during the year to simulate the real picture of distribution system. Results on 33 bus balanced and 25 bus unbalanced distribution system are taken to demonstrate the potential of the proposed algorithm.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPEC.2018.10009642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4
Abstract
The distributed generation sources (DGs) are becoming increasingly attractive due to introduction of small scale renewable energy sources. They can be integrated in to low voltage distribution networks, to reduce the burden on transmission and sub transmission network. However, the number of DGs, their placement, and sizing can influence the advantages from the distribution network operation point of view. Also, most of the time the planning is done considering the peak load demand only. However, the losses obtained at peak load, may not give the realistic picture. This paper demonstrates the application of a grey wolf optimisation method for obtaining the optimal size and location of DGs (solar photovoltaic-based) in an unbalanced distribution network. The method proposed in this paper provides a set of solutions from the point of view of voltage stability enhancement and loss minimisation. The utility can prioritise either voltage stability enhancement or loss minimisation or both to choose the best compromised solution. Moreover, the losses are calculated by considering the seasonal load and PV generation patterns during the year to simulate the real picture of distribution system. Results on 33 bus balanced and 25 bus unbalanced distribution system are taken to demonstrate the potential of the proposed algorithm.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines