Improving the dynamic frequency regulation of a multisource power system considering GRC and dead band with TCSC and SMES

M. Deepak, R. J. Abraham
{"title":"Improving the dynamic frequency regulation of a multisource power system considering GRC and dead band with TCSC and SMES","authors":"M. Deepak, R. J. Abraham","doi":"10.1504/IJPEC.2019.10017245","DOIUrl":null,"url":null,"abstract":"Coordinated operation of superconducting magnetic energy storage (SMES) and thyristor controlled series compensator (TCSC) for dynamic frequency regulation on a multisource power system is presented in this paper. The optimal integral gains of the control areas are obtained by tuning a quadratic performance index consisting of frequency deviations and tie-line power error using integral squared error technique. The effects of generation rate constraint and governor dead band nonlinearities are also considered. Time domain simulations carried out in MATLAB on a sample two area multi-unit power system comprising hydro, thermal and gas power plants reveal that the SMES-TCSC combination can effectively damp out deviations in area frequencies and tie-line power flow following a sudden load perturbation with better transient performance and reduced settling time.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPEC.2019.10017245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Coordinated operation of superconducting magnetic energy storage (SMES) and thyristor controlled series compensator (TCSC) for dynamic frequency regulation on a multisource power system is presented in this paper. The optimal integral gains of the control areas are obtained by tuning a quadratic performance index consisting of frequency deviations and tie-line power error using integral squared error technique. The effects of generation rate constraint and governor dead band nonlinearities are also considered. Time domain simulations carried out in MATLAB on a sample two area multi-unit power system comprising hydro, thermal and gas power plants reveal that the SMES-TCSC combination can effectively damp out deviations in area frequencies and tie-line power flow following a sudden load perturbation with better transient performance and reduced settling time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用TCSC和SMES改进考虑GRC和死区的多源电力系统动态频率调节
研究了超导磁储能系统与晶闸管控制串联补偿器在多源电力系统动态调频中的协同工作。利用积分平方误差技术对频率偏差和联络线功率误差组成的二次性能指标进行调谐,得到控制区域的最优积分增益。同时考虑了发电速率约束和调速器死区非线性的影响。在MATLAB中对水电、火电厂和燃气电厂组成的两区多机组电力系统进行时域仿真,结果表明,SMES-TCSC组合可以有效地抑制负荷突然扰动引起的区域频率和配线潮流偏差,具有较好的暂态性能和较短的稳定时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Power and Energy Conversion
International Journal of Power and Energy Conversion Energy-Energy Engineering and Power Technology
CiteScore
1.60
自引率
0.00%
发文量
8
期刊介绍: IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines
期刊最新文献
Research on short term load forecasting of power system based on gradient lifting tree Intelligent substation DC transformer control based on fuzzy PID technology A method of grounding fault location in power system based on adaptive filtering Fault diagnosis method for operational inspection of substation relay protection link based on characteristic parameters Fault location method for interphase short circuit in digital distribution network based on genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1