Person attribute extraction from the textual parts of web pages

IF 0.3 Q4 COMPUTER SCIENCE, CYBERNETICS Acta Cybernetica Pub Date : 2012-08-01 DOI:10.14232/ACTACYB.20.3.2012.4
T. Nagy
{"title":"Person attribute extraction from the textual parts of web pages","authors":"T. Nagy","doi":"10.14232/ACTACYB.20.3.2012.4","DOIUrl":null,"url":null,"abstract":"We present a web mining system that clusters persons sharing the same name and also extracts bibliographical information about them. The input of our system is the result of web search engine queries in English or in Hungarian. For system evaluation in English, our system (RGAI) participated in the third Web People Search Task challenge [1]. The chief characteristics of our approach compared to the others are that we focus on the raw textual parts of the web pages instead of the structured parts, we group similar attribute classes together and we explicitly handle their interdependencies. The RGAI system achieved top results on the person attribute extraction subtask, and average results on the person clustering subtask. Following the shared task annotation principles, we also manually constructed a Hungarian person disambiguation corpus and adapted our system from English to Hungarian. We present experimental results on this as well.","PeriodicalId":42512,"journal":{"name":"Acta Cybernetica","volume":"116 1","pages":"419-439"},"PeriodicalIF":0.3000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybernetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.20.3.2012.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 11

Abstract

We present a web mining system that clusters persons sharing the same name and also extracts bibliographical information about them. The input of our system is the result of web search engine queries in English or in Hungarian. For system evaluation in English, our system (RGAI) participated in the third Web People Search Task challenge [1]. The chief characteristics of our approach compared to the others are that we focus on the raw textual parts of the web pages instead of the structured parts, we group similar attribute classes together and we explicitly handle their interdependencies. The RGAI system achieved top results on the person attribute extraction subtask, and average results on the person clustering subtask. Following the shared task annotation principles, we also manually constructed a Hungarian person disambiguation corpus and adapted our system from English to Hungarian. We present experimental results on this as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从网页文本部分提取人物属性
我们提出了一个网络挖掘系统,该系统可以聚类同名的人并提取他们的书目信息。我们系统的输入是网络搜索引擎用英语或匈牙利语查询的结果。为了对英语系统进行评估,我们的系统(RGAI)参加了第三届Web人员搜索任务挑战赛[1]。与其他方法相比,我们的方法的主要特点是我们关注网页的原始文本部分,而不是结构化部分,我们将相似的属性类分组在一起,并显式地处理它们的相互依赖性。RGAI系统在人员属性提取子任务上取得了优异成绩,在人员聚类子任务上取得了平均成绩。遵循共享任务注释原则,我们还手动构建了一个匈牙利人消歧语料库,并将我们的系统从英语改编为匈牙利语。我们也给出了这方面的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Cybernetica
Acta Cybernetica COMPUTER SCIENCE, CYBERNETICS-
CiteScore
1.10
自引率
0.00%
发文量
17
期刊介绍: Acta Cybernetica publishes only original papers in the field of Computer Science. Manuscripts must be written in good English.
期刊最新文献
Integer Programming Based Optimization of Power Consumption for Data Center Networks Refined Fuzzy Profile Matching Corner-Based Implicit Patches Towards Abstraction-based Probabilistic Program Analysis Dual Convolutional Neural Network Classifier with Pyramid Attention Network for Image-Based Kinship Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1