Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles

Duo Zhang, Guohai Liu, Wenxiang Zhao
{"title":"Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles","authors":"Duo Zhang, Guohai Liu, Wenxiang Zhao","doi":"10.1504/IJVAS.2013.053783","DOIUrl":null,"url":null,"abstract":"A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high effi ciency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"11 1","pages":"279"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2013.053783","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2013.053783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high effi ciency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车多相容错永磁电机驱动的补救性神经网络逆控制
一种适用于电动汽车的五相轮毂容错内置式永磁电机,具有高效率、高功率密度和高可靠性等优点。为了实现故障后的运行,提出了一种新的补救性神经网络逆控制策略。在该方案中,利用神经网络逼近FT-IPM电机的逆模型。将该NNI系统与原电机驱动相结合,可以得到伪线性复合系统。仿真结果表明,该控制策略在故障模式下具有良好的控制性能,对负载扰动具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
期刊最新文献
Development of autopilot control algorithm for an unmanned aerial vehicle based on simulation [Public policies for an intercultural approach to the health of Pu Mapuce Zomo]. Performance evaluation of low-resolution monocular vision-based velocity estimation technique for moving obstacle detection and tracking Traffic sign recognition using deep learning A new fractional-order sliding mode controller for the cruise control system of automatic vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1