Experimental comparison of Bayesian positioning methods based on multi-sensor data fusion

D. Gruyer, A. Lambert, M. Perrollaz, D. Gingras
{"title":"Experimental comparison of Bayesian positioning methods based on multi-sensor data fusion","authors":"D. Gruyer, A. Lambert, M. Perrollaz, D. Gingras","doi":"10.1504/IJVAS.2014.057852","DOIUrl":null,"url":null,"abstract":"Localizing a vehicle consists in estimating its position state by merging data from proprioceptive sensors (inertial measurement unit, gyrometer, odometer, etc.) and exteroceptive sensors (GPS sensor). A well known solution in state estimation is provided by the Kalman filter. However, owing to the presence of nonlinearities, the Kalman estimator is applicable only through some recursive variants, among which are the Extended Kalman filter (EKF), the Unscented Kalman Filter (UKF) and the Divided Differences of first and second order (DD1 and DD2). We have compared these filters using the same experimental data. The results obtained aim to rank these approaches by their performances in terms of accuracy and consistency.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"12 1","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2014.057852","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2014.057852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

Abstract

Localizing a vehicle consists in estimating its position state by merging data from proprioceptive sensors (inertial measurement unit, gyrometer, odometer, etc.) and exteroceptive sensors (GPS sensor). A well known solution in state estimation is provided by the Kalman filter. However, owing to the presence of nonlinearities, the Kalman estimator is applicable only through some recursive variants, among which are the Extended Kalman filter (EKF), the Unscented Kalman Filter (UKF) and the Divided Differences of first and second order (DD1 and DD2). We have compared these filters using the same experimental data. The results obtained aim to rank these approaches by their performances in terms of accuracy and consistency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多传感器数据融合的贝叶斯定位方法实验比较
车辆定位包括通过融合本体感知传感器(惯性测量单元、陀螺仪、里程表等)和外部感知传感器(GPS传感器)的数据来估计其位置状态。卡尔曼滤波提供了一种众所周知的状态估计解决方案。然而,由于非线性的存在,卡尔曼估计量只能通过一些递归变量来适用,其中包括扩展卡尔曼滤波器(EKF), Unscented卡尔曼滤波器(UKF)和一阶和二阶差分(DD1和DD2)。我们用相同的实验数据对这些滤波器进行了比较。所得结果旨在对这些方法的准确性和一致性进行排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
期刊最新文献
Development of autopilot control algorithm for an unmanned aerial vehicle based on simulation [Public policies for an intercultural approach to the health of Pu Mapuce Zomo]. Performance evaluation of low-resolution monocular vision-based velocity estimation technique for moving obstacle detection and tracking Traffic sign recognition using deep learning A new fractional-order sliding mode controller for the cruise control system of automatic vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1