Use of parallel computing in mass processing of laser data

J. Będkowski, R. Bratuś, M. Prochaska, A. Rzonca
{"title":"Use of parallel computing in mass processing of laser data","authors":"J. Będkowski, R. Bratuś, M. Prochaska, A. Rzonca","doi":"10.14681/AFKIT.2015.003","DOIUrl":null,"url":null,"abstract":"The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiwum Fotogrametrii Kartografii i Teledetekcji","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14681/AFKIT.2015.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行计算在激光数据海量处理中的应用
本文的第一部分描述了用于生成并行计算所需算法的规则,并讨论了在激光扫描数据的大规模处理中使用图形处理器的研究想法的起源。本文的下一部分包括对一系列不同处理选项执行的效率评估结果,所有这些选项都通过并行计算大大加速。处理选项分为使用点云生成正射影像、点云着色、变换和生成规则网格,以及平面和边缘检测、点云分类和数据分析等高级处理,目的是为了控制质量。大多数算法必须在并行计算需求的背景下从零开始制定。其中一些算法是基于Dephos软件公司开发的现有技术,然后在本研究过程中进行了并行计算。确定了处理典型数据量时所采用的每个进程的处理时间,从而证实了所提出的解决方案的高效性以及并行计算在激光扫描数据处理中的适用性。并行计算的高效率为激光扫描数据处理方法的创建和组织提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Wykorzystanie chmur punktów lidar w ochronie czynnej borów chrobotkowych w Parku Narodowym "Bory Tucholskie" Wykorzystanie naziemnego skanowania laserowego w opracowaniu dokumentacji architektoniczno-budowlanej oraz badaniu zniekształcenia dachu Ocena dokładności modelu budynku z bardzo gęstej chmury punktów pozyskanej z integracji zdjęć o różnej geometrii Dokumentacja fotogrametryczna stanowisk archeologicznych w terenie miejskim na przykładzie Kutaisi, Gruzja Możliwości tworzenia numerycznego modelu pokrycia terenu ze stereopary zdjęć satelitarnych VFRS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1