{"title":"Use of satellite data for detecting icebergs and evaluating the iceberg threats","authors":"I. Bychkova, V. Smirnov","doi":"10.15356/2076-6734-2018-4-537-551","DOIUrl":null,"url":null,"abstract":"Te methods of satellite monitoring of dangerous ice formations, namely icebergs in the Arctic seas, representing a threat to the safety of navigation and economic activity on the Arctic shelf are considered. Te main objective of the research is to develop methods for detecting icebergs using satellite radar data and high space resolution images in the visible spectral range. Te developed method of iceberg detection is based on statistical criteria for fnding gradient zones in the analysis of two-dimensional felds of satellite images. Te algorithms of the iceberg detection, the procedure of the false target identifcation, and determination the horizontal dimensions of the icebergs and their location are described. Examples of iceberg detection using satellite information with high space resolution obtained from Sentinel-1 and Landsat-8 satellites are given. To assess the iceberg threat, we propose to use a model of their drif, one of the input parameters of which is the size of the detected objects. Tree possible situations of observation of icebergs are identifed, namely, the «status» state of objects: icebergs on open water; icebergs in drifing ice; and icebergs in the fast ice. At the same time, in each of these situations, the iceberg can be grounded, that prevents its moving. Specifc features of the iceberg monitoring at various «status» states of them are considered. Te «status» state of the iceberg is also taken into account when assessing the degree of danger of the detected object. Te use of iceberg detection techniques based on satellite radar data and visible range images is illustrated by results of monitoring the coastal areas of the Severnaya Zemlya archipelago. Te approaches proposed to detect icebergs from satellite data allow improving the quality and efciency of service for a wide number of users with ensuring the efciency and safety of Arctic navigation and activities on the Arctic shelf.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2018-4-537-551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Te methods of satellite monitoring of dangerous ice formations, namely icebergs in the Arctic seas, representing a threat to the safety of navigation and economic activity on the Arctic shelf are considered. Te main objective of the research is to develop methods for detecting icebergs using satellite radar data and high space resolution images in the visible spectral range. Te developed method of iceberg detection is based on statistical criteria for fnding gradient zones in the analysis of two-dimensional felds of satellite images. Te algorithms of the iceberg detection, the procedure of the false target identifcation, and determination the horizontal dimensions of the icebergs and their location are described. Examples of iceberg detection using satellite information with high space resolution obtained from Sentinel-1 and Landsat-8 satellites are given. To assess the iceberg threat, we propose to use a model of their drif, one of the input parameters of which is the size of the detected objects. Tree possible situations of observation of icebergs are identifed, namely, the «status» state of objects: icebergs on open water; icebergs in drifing ice; and icebergs in the fast ice. At the same time, in each of these situations, the iceberg can be grounded, that prevents its moving. Specifc features of the iceberg monitoring at various «status» states of them are considered. Te «status» state of the iceberg is also taken into account when assessing the degree of danger of the detected object. Te use of iceberg detection techniques based on satellite radar data and visible range images is illustrated by results of monitoring the coastal areas of the Severnaya Zemlya archipelago. Te approaches proposed to detect icebergs from satellite data allow improving the quality and efciency of service for a wide number of users with ensuring the efciency and safety of Arctic navigation and activities on the Arctic shelf.
期刊介绍:
The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.