A closer look at underground natural gas pipeline leaks across the United States

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Elementa-Science of the Anthropocene Pub Date : 2022-01-01 DOI:10.1525/elementa.2021.00095
Younki Cho, K. Smits, Nathaniel L. Steadman, Bridget A. Ulrich, Clay S. Bell, D. Zimmerle
{"title":"A closer look at underground natural gas pipeline leaks across the United States","authors":"Younki Cho, K. Smits, Nathaniel L. Steadman, Bridget A. Ulrich, Clay S. Bell, D. Zimmerle","doi":"10.1525/elementa.2021.00095","DOIUrl":null,"url":null,"abstract":"Underground natural gas (NG) pipeline leakage can result in methane (CH4) buildup and migration through the soil. What is not well understood in such scenarios is how the soil conditions affect the gas migration behavior, particularly in regard to the relative contributions of specific soil properties such as soil moisture content. The objective of this study was to investigate the effects of soil properties on CH4 concentration and migration from leaking underground NG pipelines. Site characteristics such as surface cover and spatial dimensions, soil samples, and gas concentration data were collected from over 70 gas leakage sites across the United States using a standardized sampling method. Soil samples were collected from excavation sites that were 1.5′–5′ in depth. The collected soil samples were analyzed in the laboratory to measure the soil texture, permeability, and moisture. Statistical analysis was performed to evaluate the effects of soil properties on CH4 migration distance and concentration. Soil texture was consistent across geographic locations due to standardized pipeline backfill protocols, allowing for the analysis of gas concentration and transport data with respect to soil conditions. Soil moisture content was the dominant influence on the gas concentration and spreading distance. High soil moisture content was associated with reduced lateral diffusion and elevated concentrations near the leak point, whereas dry conditions were associated with reduced concentrations and greater spreading distance. Increasing soil moisture content reduced the lateral diffusion of CH4 into the soil due to water-induced tortuosity, resulting in elevated concentrations close to the leak point. Lateral migration of CH4 was suspected to be by diffusion, starting at 5 m from the leaks, while transport within the immediate vicinity of the leak was controlled by advection. These findings demonstrate a pronounced effect of soil moisture content and permeability on CH4 migration distance and concentration, providing key insight into the effects of soil conditions on NG migration and how to account for such effects in leak detection surveys.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00095","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Underground natural gas (NG) pipeline leakage can result in methane (CH4) buildup and migration through the soil. What is not well understood in such scenarios is how the soil conditions affect the gas migration behavior, particularly in regard to the relative contributions of specific soil properties such as soil moisture content. The objective of this study was to investigate the effects of soil properties on CH4 concentration and migration from leaking underground NG pipelines. Site characteristics such as surface cover and spatial dimensions, soil samples, and gas concentration data were collected from over 70 gas leakage sites across the United States using a standardized sampling method. Soil samples were collected from excavation sites that were 1.5′–5′ in depth. The collected soil samples were analyzed in the laboratory to measure the soil texture, permeability, and moisture. Statistical analysis was performed to evaluate the effects of soil properties on CH4 migration distance and concentration. Soil texture was consistent across geographic locations due to standardized pipeline backfill protocols, allowing for the analysis of gas concentration and transport data with respect to soil conditions. Soil moisture content was the dominant influence on the gas concentration and spreading distance. High soil moisture content was associated with reduced lateral diffusion and elevated concentrations near the leak point, whereas dry conditions were associated with reduced concentrations and greater spreading distance. Increasing soil moisture content reduced the lateral diffusion of CH4 into the soil due to water-induced tortuosity, resulting in elevated concentrations close to the leak point. Lateral migration of CH4 was suspected to be by diffusion, starting at 5 m from the leaks, while transport within the immediate vicinity of the leak was controlled by advection. These findings demonstrate a pronounced effect of soil moisture content and permeability on CH4 migration distance and concentration, providing key insight into the effects of soil conditions on NG migration and how to account for such effects in leak detection surveys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近距离观察美国地下天然气管道泄漏
地下天然气管道泄漏会导致甲烷(CH4)积聚并通过土壤迁移。在这种情况下,不太清楚的是土壤条件如何影响气体运移行为,特别是关于特定土壤性质(如土壤含水量)的相对贡献。本研究旨在探讨土壤性质对地下天然气管道泄漏后CH4浓度和迁移的影响。使用标准化采样方法收集了美国70多个气体泄漏点的地表覆盖和空间尺寸、土壤样本和气体浓度数据等站点特征。土壤样本采集于1.5 ' -5 '深的挖掘地点。采集的土壤样品在实验室进行分析,测量土壤的质地、渗透性和水分。统计分析土壤性质对CH4迁移距离和浓度的影响。由于标准化的管道回填协议,不同地理位置的土壤质地一致,可以根据土壤条件分析气体浓度和输送数据。土壤含水量是影响气体浓度和扩散距离的主要因素。高土壤含水量与泄漏点附近的横向扩散减少和浓度升高有关,而干燥条件与浓度降低和扩散距离增加有关。土壤含水量的增加减少了CH4因水致扭曲向土壤中的横向扩散,导致泄漏点附近浓度升高。CH4的横向迁移被怀疑是通过扩散,从泄漏处5 m处开始,而泄漏附近的运输则由平流控制。这些发现表明,土壤含水量和渗透率对CH4迁移距离和浓度有显著影响,为土壤条件对NG迁移的影响以及如何在泄漏检测调查中考虑这种影响提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
期刊最新文献
Spatiotemporal changes in Iranian rivers’ discharge Structure and function of the western Baffin Bay coastal and shelf ecosystem Agroecological transitions in the mind Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1