Snow redistribution onto young sea ice: Observations and implications for climate models

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Elementa-Science of the Anthropocene Pub Date : 2022-01-01 DOI:10.1525/elementa.2021.00115
D. Clemens-Sewall, M. Smith, M. Holland, C. Polashenski, D. Perovich
{"title":"Snow redistribution onto young sea ice: Observations and implications for climate models","authors":"D. Clemens-Sewall, M. Smith, M. Holland, C. Polashenski, D. Perovich","doi":"10.1525/elementa.2021.00115","DOIUrl":null,"url":null,"abstract":"Vertical heat conduction through young ice is a major source of wintertime sea ice growth in the Arctic. However, field observations indicate that young ice preferentially accumulates wind-blown snow, resulting in greater snow thickness on young ice than would be expected from precipitation alone, and hence greater snow thickness on young ice than climate models represent. As snow has a low thermal conductivity, this additional snow thickness due to redistribution will reduce the actual heat conduction. We present new observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate Expedition which show that young ice rapidly accumulates a snow thickness of 2.5–8 cm, when wind-blown snow is available from the nearby mature ice. By applying a simple redistribution scheme and heat flux model to simulated conditions from the Community Earth System Model 2.0, we suggest that neglecting this snow redistribution onto young ice could result in the potential overestimation of conductive heat flux—and hence ice growth rates—by 3–8% on average in the Arctic in the winter in the absence of climate feedbacks. The impacts of snow redistribution are highest in the springtime and in coastal regions.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00115","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Vertical heat conduction through young ice is a major source of wintertime sea ice growth in the Arctic. However, field observations indicate that young ice preferentially accumulates wind-blown snow, resulting in greater snow thickness on young ice than would be expected from precipitation alone, and hence greater snow thickness on young ice than climate models represent. As snow has a low thermal conductivity, this additional snow thickness due to redistribution will reduce the actual heat conduction. We present new observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate Expedition which show that young ice rapidly accumulates a snow thickness of 2.5–8 cm, when wind-blown snow is available from the nearby mature ice. By applying a simple redistribution scheme and heat flux model to simulated conditions from the Community Earth System Model 2.0, we suggest that neglecting this snow redistribution onto young ice could result in the potential overestimation of conductive heat flux—and hence ice growth rates—by 3–8% on average in the Arctic in the winter in the absence of climate feedbacks. The impacts of snow redistribution are highest in the springtime and in coastal regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪在年轻海冰上的再分配:观测结果及其对气候模式的影响
通过新生冰的垂直热传导是北极冬季海冰增长的主要来源。然而,实地观测表明,年轻冰优先积累风吹雪,导致年轻冰上的雪厚比单靠降水预计的要大,因此年轻冰上的雪厚比气候模式所代表的要大。由于雪的导热性较低,由于重新分配而增加的雪厚将减少实际的热传导。我们提出了北极气候考察研究多学科漂流观测站的新观测结果,这些观测结果表明,当附近的成熟冰有风吹雪时,年轻冰迅速积累了2.5-8厘米厚的雪。通过将一个简单的再分配方案和热通量模型应用于来自社区地球系统模型2.0的模拟条件,我们表明,在没有气候反馈的情况下,忽略这种在年轻冰层上的雪的再分配可能导致对北极冬季导热热通量的潜在高估,从而导致冰的增长率平均高估3-8%。积雪再分配的影响在春季和沿海地区最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
期刊最新文献
Spatiotemporal changes in Iranian rivers’ discharge Structure and function of the western Baffin Bay coastal and shelf ecosystem Agroecological transitions in the mind Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1