Integrating Preprocessing Operations into Deep Learning Model: Case Study of Posttreatment Visual Acuity Prediction

IF 0.8 Q4 ENGINEERING, BIOMEDICAL Advanced Biomedical Engineering Pub Date : 2022-01-01 DOI:10.14326/abe.11.16
Ryo Otsuki, Osamu Sugiyama, Yuki Mori, M. Miyake, S. Hiragi, Goshiro Yamamoto, L. Santos, Yuta Nakanishi, Yoshikatsu Hosoda, H. Tamura, S. Matsumoto, A. Tsujikawa, T. Kuroda
{"title":"Integrating Preprocessing Operations into Deep Learning Model: Case Study of Posttreatment Visual Acuity Prediction","authors":"Ryo Otsuki, Osamu Sugiyama, Yuki Mori, M. Miyake, S. Hiragi, Goshiro Yamamoto, L. Santos, Yuta Nakanishi, Yoshikatsu Hosoda, H. Tamura, S. Matsumoto, A. Tsujikawa, T. Kuroda","doi":"10.14326/abe.11.16","DOIUrl":null,"url":null,"abstract":"Designing a deep neural network model that integrates clinical images with other electronic medical records entails various preprocessing operations. Preprocessing of clinical images often requires trimming of parts of the lesions shown in the images, whereas preprocessing of other electronic medical records requires vectorization of these records; for example, patient age is often converted into a categorical vector of 10-year intervals. Although these preprocessing operations are critical to the performance of the classification model, there is no guarantee that the preprocessing step chosen is appropriate for model training. The ability to integrate these preprocessing operations into a deep neural network model and to train the model, including the pre-processing operations, can help design a multi-modal medical classification model. This study proposes integration layers of preprocessing, both for clinical images and electronic medical records, in deep neural network models. Preprocessing of clinical images is realized by a vision transformer layer that selectively adopts the parts of the images requiring attention. The preprocessing of other medical electrical records is performed by adopting full-connection layers and normalizing these layers. These proposed preprocessing-integrated layers were verified using a posttreatment visual acuity prediction task in ophthalmology as a case study. This prediction task requires clinical images as well as patient profile data corresponding to each patient ʼ s posttreatment logMAR visual acuity. The performance of a heuristically designed prediction model was compared with the performance of the prediction model that includes the proposed preprocessing integration layers. The mean square errors between predicted and correct results were 0.051 for the heuristic model and 0.054 for the proposed model. Experimental results showed that the proposed model utilizing preprocessing integration layers achieved nearly the same performance as the heuristically designed model.","PeriodicalId":54017,"journal":{"name":"Advanced Biomedical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14326/abe.11.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Designing a deep neural network model that integrates clinical images with other electronic medical records entails various preprocessing operations. Preprocessing of clinical images often requires trimming of parts of the lesions shown in the images, whereas preprocessing of other electronic medical records requires vectorization of these records; for example, patient age is often converted into a categorical vector of 10-year intervals. Although these preprocessing operations are critical to the performance of the classification model, there is no guarantee that the preprocessing step chosen is appropriate for model training. The ability to integrate these preprocessing operations into a deep neural network model and to train the model, including the pre-processing operations, can help design a multi-modal medical classification model. This study proposes integration layers of preprocessing, both for clinical images and electronic medical records, in deep neural network models. Preprocessing of clinical images is realized by a vision transformer layer that selectively adopts the parts of the images requiring attention. The preprocessing of other medical electrical records is performed by adopting full-connection layers and normalizing these layers. These proposed preprocessing-integrated layers were verified using a posttreatment visual acuity prediction task in ophthalmology as a case study. This prediction task requires clinical images as well as patient profile data corresponding to each patient ʼ s posttreatment logMAR visual acuity. The performance of a heuristically designed prediction model was compared with the performance of the prediction model that includes the proposed preprocessing integration layers. The mean square errors between predicted and correct results were 0.051 for the heuristic model and 0.054 for the proposed model. Experimental results showed that the proposed model utilizing preprocessing integration layers achieved nearly the same performance as the heuristically designed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将预处理操作整合到深度学习模型中:处理后视力预测的案例研究
设计一个集成临床图像与其他电子病历的深度神经网络模型需要进行各种预处理操作。临床图像的预处理通常需要对图像中显示的病变部分进行修剪,而其他电子病历的预处理则需要对这些记录进行矢量化;例如,患者年龄通常被转换成10年间隔的分类向量。尽管这些预处理操作对分类分类模型的性能至关重要,但不能保证所选择的预处理步骤适合模型训练。将这些预处理操作集成到深度神经网络模型中并训练模型(包括预处理操作)的能力可以帮助设计多模态医学分类模型。本研究提出了在深度神经网络模型中对临床图像和电子病历进行预处理的集成层。临床图像的预处理是通过一个视觉变换层来实现的,该层有选择地采用图像中需要注意的部分。其他病历的预处理采用全连接层,并对这些层进行规范化处理。以眼科治疗后的视力预测任务为例,对这些预处理集成层进行了验证。这项预测任务需要临床图像以及与每位患者治疗后logMAR视力相对应的患者数据。将启发式设计的预测模型与包含所提出的预处理集成层的预测模型的性能进行了比较。启发式模型的预测结果与正确结果的均方误差为0.051,所提模型的均方误差为0.054。实验结果表明,采用预处理集成层的模型与启发式设计模型的性能基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Biomedical Engineering
Advanced Biomedical Engineering ENGINEERING, BIOMEDICAL-
CiteScore
1.40
自引率
10.00%
发文量
15
审稿时长
15 weeks
期刊最新文献
SATORI: Amplification-free digital RNA detection method for the diagnosis of viral infections. Basic Investigation of the Effect of Insole Shape on Leg Skeletal Muscle Mass and Pressure Changes during Walking Investigating Mental Task Combination for Brain-Computer Interface Based on Brain State Discrimination Using Subjective Ratings Development of Beat Analysis Software for the Non-invasive Evaluation of Cardiac Constructs Fabricated with a Three-dimensional Bioprinter Transepidermal Water Loss Estimation Model for Evaluating Skin Barrier Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1