J. Gelfond, J. Ibrahim, Ming-Hui Chen, Wei Sun, Kaitlyn N. Lewis, Sean Kinahan, Matthew A. Hibbs, R. Buffenstein
{"title":"Homology cluster differential expression analysis for interspecies mRNA-Seq experiments","authors":"J. Gelfond, J. Ibrahim, Ming-Hui Chen, Wei Sun, Kaitlyn N. Lewis, Sean Kinahan, Matthew A. Hibbs, R. Buffenstein","doi":"10.1515/sagmb-2014-0056","DOIUrl":null,"url":null,"abstract":"Abstract There is an increasing demand for exploration of the transcriptomes of multiple species with extraordinary traits such as the naked-mole rat (NMR). The NMR is remarkable because of its longevity and resistance to developing cancer. It is of scientific interest to understand the molecular mechanisms that impart these traits, and RNA-sequencing experiments with comparator species can correlate transcriptome dynamics with these phenotypes. Comparing transcriptome differences requires a homology mapping of each transcript in one species to transcript(s) within the other. Such mappings are necessary, especially if one species does not have well-annotated genome available. Current approaches for this type of analysis typically identify the best match for each transcript, but the best match analysis ignores the inherent risks of mismatch when there are multiple candidate transcripts with similar homology scores. We present a method that treats the set of homologs from a novel species as a cluster corresponding to a single gene in the reference species, and we compare the cluster-based approach to a conventional best-match analysis in both simulated data and a case study with NMR and mouse tissues. We demonstrate that the cluster-based approach has superior power to detect differential expression.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2014-0056","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2014-0056","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract There is an increasing demand for exploration of the transcriptomes of multiple species with extraordinary traits such as the naked-mole rat (NMR). The NMR is remarkable because of its longevity and resistance to developing cancer. It is of scientific interest to understand the molecular mechanisms that impart these traits, and RNA-sequencing experiments with comparator species can correlate transcriptome dynamics with these phenotypes. Comparing transcriptome differences requires a homology mapping of each transcript in one species to transcript(s) within the other. Such mappings are necessary, especially if one species does not have well-annotated genome available. Current approaches for this type of analysis typically identify the best match for each transcript, but the best match analysis ignores the inherent risks of mismatch when there are multiple candidate transcripts with similar homology scores. We present a method that treats the set of homologs from a novel species as a cluster corresponding to a single gene in the reference species, and we compare the cluster-based approach to a conventional best-match analysis in both simulated data and a case study with NMR and mouse tissues. We demonstrate that the cluster-based approach has superior power to detect differential expression.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.