{"title":"On k-regular edge connectivity of chemical graphs","authors":"S. Ediz, İdris Çiftçi","doi":"10.1515/mgmc-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"106 - 110"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2022-0014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.
期刊介绍:
This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.