{"title":"Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History","authors":"N. Dharmayanti","doi":"10.14334/WARTAZOA.V21I1.948","DOIUrl":null,"url":null,"abstract":"Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon) that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1) Maximum parsimony, (2) Distance, and (3) Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data. Key words: Phylogenetic, analysis, evolution, nucleotide/protein sequence","PeriodicalId":42818,"journal":{"name":"Wartazoa-Buletin Ilmu Peternakan dan Kesehatan Hewan Indonesia","volume":"21 1","pages":"1-10"},"PeriodicalIF":0.3000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wartazoa-Buletin Ilmu Peternakan dan Kesehatan Hewan Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14334/WARTAZOA.V21I1.948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon) that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1) Maximum parsimony, (2) Distance, and (3) Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data. Key words: Phylogenetic, analysis, evolution, nucleotide/protein sequence