{"title":"Impact of Storage Time on the Composition of a Finished Compost Product: A Case Study","authors":"John P. Chastain","doi":"10.13031/aea.15312","DOIUrl":null,"url":null,"abstract":"Highlights The concentrations of major plant nutrients, key minor plant nutrients, and carbon were measured for finished turkey poult litter compost that had been stored for 29 to 583 days in open windrows at a commercial composting facility. It was found that the concentrations of TN, P2O5, K2O, and minor plant nutrients were not significantly correlated with respect to compost age. Significant negative correlations were observed for the concentrations of organic matter and carbon resulting in a decrease in C:N. Significant decreases in compost pH and increases in bulk density were also observed. Abstract. Several studies have provided information concerning the loss of nitrogen, phosphorous, potassium, carbon, and organic matter from manures and plant residues during active composting. However, very little information was found to provide insight into the changes in compost composition as the product ages during curing and storage in uncovered windrows. The objective of this study was to observe changes in compost composition after it was removed from a composting shed and was stored in large un-covered windrows at a compost production site that used turkey poult litter (manure and wood shavings) as the primary ingredient. Compost samples and production records were obtained for 7 windrows and it was determined that the active composting time under the shed (AC) averaged 99 days and the time allowed for curing and storage in the uncovered windrows (CS) ranged from 29 to 583 days. As a result, the total compost age (CA = AC + CS) at the time of sampling ranged from 131 to 674 days. The quantities measured were moisture, pH, bulk density, electrical conductivity (EC), carbon (C). organic matter (OM), total ammoniacal N (TAN = NH4+-N + NH3-N), nitrate-N, organic-N, total-N (TN), P2O5, K2O, Ca, Mg, S, Zn, Cu, Mn, Fe, Na, and Al. The TN content was not found to change significantly while being stored in the outside windrows. However, the TAN content decreased significantly with storage time while nitrate-N and organic-N concentrations increased. The results showed evidence of nitrification of ammonium-N and a build-up of organic-N during storage. Storage time did not significantly impact concentrations of P2O5, K2O, Al, Na, and all minor plant nutrients measured. The pH fell from 8.9 at a compost age of 131 days to a mean of 6.8 by day 363 providing evidence of formation of organic acids during storage. Significant decreases during storage were observed for C, OM, and C:N. The rate of organic matter loss during storage was -0.623 g OM/kg DM/day and carbon was lost at the rate of -0.447 g C/kg DM/day. The electrical conductivity was not correlated with storage time and the mean was 3.80 ± 3.25 mmhos/cm. The bulk density increased significantly during curing and storage (R2 = 0.693) and was believed to be the result of compression settling. Keywords: Compost, Manure Management, Plant nutrients, Treatment.","PeriodicalId":55501,"journal":{"name":"Applied Engineering in Agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Engineering in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/aea.15312","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights The concentrations of major plant nutrients, key minor plant nutrients, and carbon were measured for finished turkey poult litter compost that had been stored for 29 to 583 days in open windrows at a commercial composting facility. It was found that the concentrations of TN, P2O5, K2O, and minor plant nutrients were not significantly correlated with respect to compost age. Significant negative correlations were observed for the concentrations of organic matter and carbon resulting in a decrease in C:N. Significant decreases in compost pH and increases in bulk density were also observed. Abstract. Several studies have provided information concerning the loss of nitrogen, phosphorous, potassium, carbon, and organic matter from manures and plant residues during active composting. However, very little information was found to provide insight into the changes in compost composition as the product ages during curing and storage in uncovered windrows. The objective of this study was to observe changes in compost composition after it was removed from a composting shed and was stored in large un-covered windrows at a compost production site that used turkey poult litter (manure and wood shavings) as the primary ingredient. Compost samples and production records were obtained for 7 windrows and it was determined that the active composting time under the shed (AC) averaged 99 days and the time allowed for curing and storage in the uncovered windrows (CS) ranged from 29 to 583 days. As a result, the total compost age (CA = AC + CS) at the time of sampling ranged from 131 to 674 days. The quantities measured were moisture, pH, bulk density, electrical conductivity (EC), carbon (C). organic matter (OM), total ammoniacal N (TAN = NH4+-N + NH3-N), nitrate-N, organic-N, total-N (TN), P2O5, K2O, Ca, Mg, S, Zn, Cu, Mn, Fe, Na, and Al. The TN content was not found to change significantly while being stored in the outside windrows. However, the TAN content decreased significantly with storage time while nitrate-N and organic-N concentrations increased. The results showed evidence of nitrification of ammonium-N and a build-up of organic-N during storage. Storage time did not significantly impact concentrations of P2O5, K2O, Al, Na, and all minor plant nutrients measured. The pH fell from 8.9 at a compost age of 131 days to a mean of 6.8 by day 363 providing evidence of formation of organic acids during storage. Significant decreases during storage were observed for C, OM, and C:N. The rate of organic matter loss during storage was -0.623 g OM/kg DM/day and carbon was lost at the rate of -0.447 g C/kg DM/day. The electrical conductivity was not correlated with storage time and the mean was 3.80 ± 3.25 mmhos/cm. The bulk density increased significantly during curing and storage (R2 = 0.693) and was believed to be the result of compression settling. Keywords: Compost, Manure Management, Plant nutrients, Treatment.
期刊介绍:
This peer-reviewed journal publishes applications of engineering and technology research that address agricultural, food, and biological systems problems. Submissions must include results of practical experiences, tests, or trials presented in a manner and style that will allow easy adaptation by others; results of reviews or studies of installations or applications with substantially new or significant information not readily available in other refereed publications; or a description of successful methods of techniques of education, outreach, or technology transfer.