Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm for Dynamic Eye-Tracking Stimuli

E. A. Lagmay, M. M. Rodrigo
{"title":"Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm for Dynamic Eye-Tracking Stimuli","authors":"E. A. Lagmay, M. M. Rodrigo","doi":"10.1561/116.00000026","DOIUrl":null,"url":null,"abstract":"In eye-tracking research, an area of interest (AOI) is defined as any object in the visual stimuli which is/are focused on by the viewer, defined with bounding boxes of any shape. If a study makes use of a small number of static visual stimuli, then researchers may define AOIs manually. However, if the stimuli is dynamic, then manual AOI definition is not efficient or scalable. This paper presents the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm which automatically esti-mates the AOI bounding boxes in dynamic stimuli using simple image segmentation techniques. This algorithm is an improvement on the Automatic AOI Bounding Boxes Estimation Algorithm. It uses a faster version of the SLIC algorithm which utilizes the AVX2 SIMD (Single Instruction, Multiple Data) parallelization paradigm, and replaces the second K-Means Image Segmentation procedure at the end of the pre-∗ and in the evaluation of the the end results of the Enhanced Automatic AOI Bounding Boxes Estimation vious version of the algorithm with Region Adjacency Graph (RAG) Thresholding. The evaluation of the overall results of the new algorithm shows that the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm is superior to its predecessor both in terms of accuracy (recall and precision) and efficiency (benchmarking).","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/116.00000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

In eye-tracking research, an area of interest (AOI) is defined as any object in the visual stimuli which is/are focused on by the viewer, defined with bounding boxes of any shape. If a study makes use of a small number of static visual stimuli, then researchers may define AOIs manually. However, if the stimuli is dynamic, then manual AOI definition is not efficient or scalable. This paper presents the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm which automatically esti-mates the AOI bounding boxes in dynamic stimuli using simple image segmentation techniques. This algorithm is an improvement on the Automatic AOI Bounding Boxes Estimation Algorithm. It uses a faster version of the SLIC algorithm which utilizes the AVX2 SIMD (Single Instruction, Multiple Data) parallelization paradigm, and replaces the second K-Means Image Segmentation procedure at the end of the pre-∗ and in the evaluation of the the end results of the Enhanced Automatic AOI Bounding Boxes Estimation vious version of the algorithm with Region Adjacency Graph (RAG) Thresholding. The evaluation of the overall results of the new algorithm shows that the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm is superior to its predecessor both in terms of accuracy (recall and precision) and efficiency (benchmarking).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态眼动追踪刺激的增强自动感兴趣区域(AOI)边界盒估计算法
在眼动追踪研究中,兴趣区域(AOI)被定义为视觉刺激中被观看者关注的任何物体,用任意形状的边界框来定义。如果一项研究使用少量静态视觉刺激,那么研究人员可能会手动定义aoi。然而,如果刺激是动态的,那么手动AOI定义是不有效的或可扩展的。本文提出了一种增强的AOI边界盒自动估计算法,该算法使用简单的图像分割技术自动估计动态刺激下的AOI边界盒。该算法是对自动AOI边界盒估计算法的改进。它使用更快版本的SLIC算法,该算法利用AVX2 SIMD(单指令,多数据)并行化范例,并在预*结束时和在使用区域邻接图(RAG)阈值评估算法的增强自动AOI边界盒估计版本的最终结果时替换第二个K-Means图像分割过程。对新算法整体结果的评估表明,增强的自动AOI边界盒估计算法在准确率(召回率和精度)和效率(基准测试)方面都优于其前身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
期刊最新文献
A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology Speech-and-Text Transformer: Exploiting Unpaired Text for End-to-End Speech Recognition GP-Net: A Lightweight Generative Convolutional Neural Network with Grasp Priority Reversible Data Hiding in Compressible Encrypted Images with Capacity Enhancement Convolutional Neural Networks Inference Memory Optimization with Receptive Field-Based Input Tiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1