Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02

Pub Date : 2022-02-28 DOI:10.15407/knit2022.01.003
I. Vavilova, V. Khramtsov, D. Dobrycheva, M. Vasylenko, A. Elyiv, O. Melnyk
{"title":"Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02","authors":"I. Vavilova, V. Khramtsov, D. Dobrycheva, M. Vasylenko, A. Elyiv, O. Melnyk","doi":"10.15407/knit2022.01.003","DOIUrl":null,"url":null,"abstract":"We applied the image-based approach with a convolutional neural network (CNN) model to the sample of low-redshift galaxies with –24m<Mr<–19.4m from the SDSS DR9. We divided it into two subsamples, SDSS DR9 galaxy dataset and Galaxy Zoo 2 (GZ2) dataset, considering them as the inference and training datasets, respectively. To determine the principal parameters of galaxy morphology defined within the GZ2 project, we classified the galaxies into five visual types and 34 morphological features of galaxies from the inference dataset, which do not match with GZ2 training dataset. As a result, we created the morphological catalog of 315782 galaxies at 0.02<z<0.1, where these classes and features were defined for the first time for 216148 galaxies by image-based CNN classifier. For the rest of galaxies the initial morphological classification was re-assigned as in the GZ2 project. Main results are presented in the catalog of 19468 completely rounded, 27321 rounded in-between, 3235 cigar-shaped, 4099 edge-on, 18615 spiral, and 72738 general low-redshift galaxies of the studied SDSS sample. Our method shows the promising performance of morphological classification attaining >93 % of accuracy for five classes morphology prediction except the cigar-shaped (~75 %) and completely rounded (~83 %) galaxies. As for the classification of galaxies by their detailed structural morphological features, our CNN model gives the accuracy in the range of 92–99 % depending on features, a number of galaxies with the given feature in the inference dataset, and the galaxy image quality. As a result, for the first time we assigned 34 morphological detailed features (bar, rings, number of spiral arms, mergers, etc.) for more than 160000 low-redshift galaxies from the SDSS DR9. We demonstrate that implication of the CNN model with adversarial validation and adversarial image data augmentation improves classification of smaller and fainter SDSS galaxies with mr <17.7.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/knit2022.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We applied the image-based approach with a convolutional neural network (CNN) model to the sample of low-redshift galaxies with –24m93 % of accuracy for five classes morphology prediction except the cigar-shaped (~75 %) and completely rounded (~83 %) galaxies. As for the classification of galaxies by their detailed structural morphological features, our CNN model gives the accuracy in the range of 92–99 % depending on features, a number of galaxies with the given feature in the inference dataset, and the galaxy image quality. As a result, for the first time we assigned 34 morphological detailed features (bar, rings, number of spiral arms, mergers, etc.) for more than 160000 low-redshift galaxies from the SDSS DR9. We demonstrate that implication of the CNN model with adversarial validation and adversarial image data augmentation improves classification of smaller and fainter SDSS galaxies with mr <17.7.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于SDSS的星系形态分类的机器学习技术。2以图像为基础的星系形态表
我们将基于图像的方法与卷积神经网络(CNN)模型应用于低红移星系样本,除了雪茄形(~ 75%)和完全圆形(~ 83%)星系外,五类星系的形态预测准确率为- 24m93%。对于通过详细的结构形态特征对星系进行分类,我们的CNN模型根据特征、推理数据集中具有给定特征的星系数量以及星系图像质量给出了92% - 99%的准确率。因此,我们首次为来自SDSS DR9的16万多个低红移星系分配了34个形态学细节特征(条形、环形、旋臂数量、合并等)。我们证明了具有对抗性验证和对抗性图像数据增强的CNN模型可以改善mr <17.7的较小和较暗的SDSS星系的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1