DEEP LEARNING FOR STOCK MARKET TRADING: A SUPERIOR TRADING STRATEGY?

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2019-01-01 DOI:10.14311/NNW.2019.29.011
D. Fister, Johnathan Mun, Vita Jagrič, Timotej Jagrič
{"title":"DEEP LEARNING FOR STOCK MARKET TRADING: A SUPERIOR TRADING STRATEGY?","authors":"D. Fister, Johnathan Mun, Vita Jagrič, Timotej Jagrič","doi":"10.14311/NNW.2019.29.011","DOIUrl":null,"url":null,"abstract":"Deep-learning initiatives have vastly changed the analysis of data. Complex networks became accessible to anyone in any research area. In this paper we are proposing a deep-learning long short-term memory network (LSTM) for automated stock trading. A mechanical trading system is used to evaluate its performance. The proposed solution is compared to traditional trading strategies, i.e., passive and rule-based trading strategies, as well as machine learning classifiers. We have discovered that the deep-learning long short-term memory network has outperformed other trading strategies for the German blue-chip stock, BMW, during the 2010–2018 period.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2019.29.011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 13

Abstract

Deep-learning initiatives have vastly changed the analysis of data. Complex networks became accessible to anyone in any research area. In this paper we are proposing a deep-learning long short-term memory network (LSTM) for automated stock trading. A mechanical trading system is used to evaluate its performance. The proposed solution is compared to traditional trading strategies, i.e., passive and rule-based trading strategies, as well as machine learning classifiers. We have discovered that the deep-learning long short-term memory network has outperformed other trading strategies for the German blue-chip stock, BMW, during the 2010–2018 period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票市场交易的深度学习:一种优越的交易策略?
深度学习计划极大地改变了数据分析。任何研究领域的任何人都可以访问复杂的网络。在本文中,我们提出了一种深度学习长短期记忆网络(LSTM)用于自动股票交易。一个机械交易系统被用来评估其表现。将提出的解决方案与传统的交易策略(即被动和基于规则的交易策略)以及机器学习分类器进行比较。我们发现,在2010-2018年期间,深度学习长短期记忆网络在德国蓝筹股宝马(BMW)上的表现优于其他交易策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1