Tunnel displacement prediction under spatial effect based on Gaussian process regression optimized by differential evolution

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2021-01-01 DOI:10.14311/nnw.2021.31.011
S. Zheng, A. Jiang, X. Yang
{"title":"Tunnel displacement prediction under spatial effect based on Gaussian process regression optimized by differential evolution","authors":"S. Zheng, A. Jiang, X. Yang","doi":"10.14311/nnw.2021.31.011","DOIUrl":null,"url":null,"abstract":"The prediction and analysis of surrounding rock deformation is a primary risk assessment method in tunnel engineering. However, the accurate prediction result is not easy to achieve due to the influence of multiple factors such as rock mass properties, support structure, and the spatial effect of tunnel construction. In this paper, a multivariate time-series model (MTSM) for tunnel displacement prediction is studied based on Gaussian process regression (GPR) optimized by differential evolutionary (DE) strategy, where the spatial effect is intuitively expressed through an extended time-series model. First, building learning samples for GPR, in which the inputs is the displacement data of the previous n days and the output is the data of the day (n + 1). Then, for each sample, an input item is added successively to form an expanded learning sample, which is the “distance between the construction face and monitoring section” on the day (n+ 1). Taking the root mean square error between the regression and measured data as the control index, the GPR model is trained to express the nonlinear mapping relationship between input and output, and the optimal parameters of this model are searched by DE. The displacement multivariate time-series model represented by DE-GPR is known as MTSM. On this basis, the applicability of GPR for tunnel displacement prediction and the necessity of DE optimization are illustrated by comparing the prediction results of several commonly used machine learning models. At the same time, the influence of GPR and DE parameters on the regression result and the computational efficiency of the MTSM model is analyzed, the recommendation for parameter values are given considering both calculation efficiency and accuracy. This method is successfully applied to the Leshanting tunnel of Puyan expressway in Fujian province, China, and the results show that the MTSM based on DE-GPR has a good ability in the deformation prediction of the surrounding rock, which provides a new method for tunnel engineering safety control.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

The prediction and analysis of surrounding rock deformation is a primary risk assessment method in tunnel engineering. However, the accurate prediction result is not easy to achieve due to the influence of multiple factors such as rock mass properties, support structure, and the spatial effect of tunnel construction. In this paper, a multivariate time-series model (MTSM) for tunnel displacement prediction is studied based on Gaussian process regression (GPR) optimized by differential evolutionary (DE) strategy, where the spatial effect is intuitively expressed through an extended time-series model. First, building learning samples for GPR, in which the inputs is the displacement data of the previous n days and the output is the data of the day (n + 1). Then, for each sample, an input item is added successively to form an expanded learning sample, which is the “distance between the construction face and monitoring section” on the day (n+ 1). Taking the root mean square error between the regression and measured data as the control index, the GPR model is trained to express the nonlinear mapping relationship between input and output, and the optimal parameters of this model are searched by DE. The displacement multivariate time-series model represented by DE-GPR is known as MTSM. On this basis, the applicability of GPR for tunnel displacement prediction and the necessity of DE optimization are illustrated by comparing the prediction results of several commonly used machine learning models. At the same time, the influence of GPR and DE parameters on the regression result and the computational efficiency of the MTSM model is analyzed, the recommendation for parameter values are given considering both calculation efficiency and accuracy. This method is successfully applied to the Leshanting tunnel of Puyan expressway in Fujian province, China, and the results show that the MTSM based on DE-GPR has a good ability in the deformation prediction of the surrounding rock, which provides a new method for tunnel engineering safety control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间效应下基于高斯过程回归的隧道位移预测
围岩变形预测与分析是隧道工程风险评估的主要方法之一。然而,由于岩体性质、支护结构、隧道施工空间效应等多种因素的影响,难以获得准确的预测结果。本文研究了基于差分进化(DE)策略优化的高斯过程回归(GPR)的隧道位移预测多元时间序列模型(MTSM),该模型通过扩展时间序列模型直观地表达空间效应。首先构建探地雷达的学习样本,输入为前n天的位移数据,输出为当天(n+ 1)的数据。然后,对每个样本依次增加一个输入项,形成一个扩展的学习样本,即当天(n+ 1)的“施工面与监测断面之间的距离”。以回归与实测数据的均方根误差作为控制指标,训练GPR模型来表达输入和输出之间的非线性映射关系,并通过DE搜索该模型的最优参数,以DE-GPR为代表的位移多元时间序列模型称为MTSM。在此基础上,通过比较几种常用的机器学习模型的预测结果,说明探地雷达在隧道位移预测中的适用性和DE优化的必要性。同时,分析了GPR和DE参数对MTSM模型回归结果和计算效率的影响,给出了考虑计算效率和精度的参数取值建议。该方法成功应用于福建普岩高速公路乐山亭隧道,结果表明,基于DE-GPR的MTSM具有较好的围岩变形预测能力,为隧道工程安全控制提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1