S. Sultana, Syed Sajjad Hussain, M. Hashmani, Jawwad Ahmad, Muhammad Zubair
{"title":"A deep learning hybrid ensemble fusion for chest radiograph classification","authors":"S. Sultana, Syed Sajjad Hussain, M. Hashmani, Jawwad Ahmad, Muhammad Zubair","doi":"10.14311/nnw.2021.31.010","DOIUrl":null,"url":null,"abstract":"Biomedical imaging, archiving, and classification is the recent challenge of computer-aided medical imaging. The popular and influential Deep Learning methods predict and congregate distinct markable features of ambiguity in radiographs precisely and accurately. This study submits a new topology of a deep learning network for chest radiograph classification. In this approach, a hybrid ensemble fusion of neural network topology can better diagnose ambiguities with high precision. The proposed topology also compares statistical findings with three optimizers and the most possible varying essential attributes of dropout probabilities and learning rates. The performance as a function of the AUCROC of this model is measured on the Chest Xpert dataset.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Biomedical imaging, archiving, and classification is the recent challenge of computer-aided medical imaging. The popular and influential Deep Learning methods predict and congregate distinct markable features of ambiguity in radiographs precisely and accurately. This study submits a new topology of a deep learning network for chest radiograph classification. In this approach, a hybrid ensemble fusion of neural network topology can better diagnose ambiguities with high precision. The proposed topology also compares statistical findings with three optimizers and the most possible varying essential attributes of dropout probabilities and learning rates. The performance as a function of the AUCROC of this model is measured on the Chest Xpert dataset.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.