Breast cancer classification using a novel hybrid feature selection approach

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2023-01-01 DOI:10.14311/nnw.2023.33.005
E. Akkur, Fuat Türk, Osman Erogul
{"title":"Breast cancer classification using a novel hybrid feature selection approach","authors":"E. Akkur, Fuat Türk, Osman Erogul","doi":"10.14311/nnw.2023.33.005","DOIUrl":null,"url":null,"abstract":"Many women around the world die due to breast cancer. If breast cancer is treated in the early phase, mortality rates may significantly be reduced. Quite a number of approaches have been proposed to help in the early detection of breast cancer. A novel hybrid feature selection model is suggested in this study. This novel hybrid model aims to build an efficient feature selection method and successfully classify breast lesions. A combination of relief and binary Harris hawk optimization (BHHO) hybrid model is used for feature selection. Then, k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression (LR) and naive Bayes (NB) methods are preferred for the classification task. The suggested hybrid model is tested by three different breast cancer datasets which are Wisconsin diagnostic breast cancer dataset (WDBC), Wisconsin breast cancer dataset (WBCD) and mammographic breast cancer dataset (MBCD). According to the experimental results, the relief and BHHO hybrid model improves the performance of all classification algorithms in all three datasets. For WDBC, relief-BHO-SVM model shows the highest classification rates with an of accuracy of 98.77%, precision of 97.17%, recall of 99.52%, F1-score of 98.33%, specificity of 99.72% and balanced accuracy of 99.62%. For WBCD, relief-BHO-SVM model achieves of accuracy of 99.28%, precision of 98.76%, recall of 99.17%, F1-score of 98.96%, specificity of 99.56% and balanced accuracy of 99.36%. Relief-BHO-SVM model performs the best with an accuracy of 97.44%, precision of 97.41%, recall of 98.26%, F1-score of 97.84%, specificity of 97.47% and balanced accuracy of 97.86% for MBCD. Furthermore, the relief-BHO-SVM model has achieved better results than other known approaches. Compared with recent studies on breast cancer classification, the suggested hybrid method has achieved quite good results.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Many women around the world die due to breast cancer. If breast cancer is treated in the early phase, mortality rates may significantly be reduced. Quite a number of approaches have been proposed to help in the early detection of breast cancer. A novel hybrid feature selection model is suggested in this study. This novel hybrid model aims to build an efficient feature selection method and successfully classify breast lesions. A combination of relief and binary Harris hawk optimization (BHHO) hybrid model is used for feature selection. Then, k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression (LR) and naive Bayes (NB) methods are preferred for the classification task. The suggested hybrid model is tested by three different breast cancer datasets which are Wisconsin diagnostic breast cancer dataset (WDBC), Wisconsin breast cancer dataset (WBCD) and mammographic breast cancer dataset (MBCD). According to the experimental results, the relief and BHHO hybrid model improves the performance of all classification algorithms in all three datasets. For WDBC, relief-BHO-SVM model shows the highest classification rates with an of accuracy of 98.77%, precision of 97.17%, recall of 99.52%, F1-score of 98.33%, specificity of 99.72% and balanced accuracy of 99.62%. For WBCD, relief-BHO-SVM model achieves of accuracy of 99.28%, precision of 98.76%, recall of 99.17%, F1-score of 98.96%, specificity of 99.56% and balanced accuracy of 99.36%. Relief-BHO-SVM model performs the best with an accuracy of 97.44%, precision of 97.41%, recall of 98.26%, F1-score of 97.84%, specificity of 97.47% and balanced accuracy of 97.86% for MBCD. Furthermore, the relief-BHO-SVM model has achieved better results than other known approaches. Compared with recent studies on breast cancer classification, the suggested hybrid method has achieved quite good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用一种新的混合特征选择方法进行乳腺癌分类
全世界有许多妇女死于乳腺癌。如果乳腺癌在早期阶段得到治疗,死亡率可能会大大降低。已经提出了相当多的方法来帮助早期发现乳腺癌。本文提出了一种新的混合特征选择模型。该混合模型旨在建立一种高效的特征选择方法,并成功地对乳腺病变进行分类。采用地形起伏和二元哈里斯鹰优化(BHHO)混合模型进行特征选择。然后,k-最近邻(k-NN)、支持向量机(SVM)、逻辑回归(LR)和朴素贝叶斯(NB)方法优先用于分类任务。采用威斯康辛州诊断性乳腺癌数据集(WDBC)、威斯康辛州乳腺癌数据集(WBCD)和乳腺x线摄影乳腺癌数据集(MBCD)对所建议的混合模型进行了测试。实验结果表明,浮雕和BHHO混合模型在三种数据集上都提高了所有分类算法的性能。对于WDBC, relief-BHO-SVM模型的分类率最高,准确率为98.77%,准确率为97.17%,召回率为99.52%,f1评分为98.33%,特异性为99.72%,平衡准确率为99.62%。对于WBCD, relief-BHO-SVM模型准确率为99.28%,精密度为98.76%,召回率为99.17%,f1评分为98.96%,特异性为99.56%,平衡准确率为99.36%。Relief-BHO-SVM模型对MBCD的准确率为97.44%,准确率为97.41%,召回率为98.26%,f1评分为97.84%,特异性为97.47%,平衡准确率为97.86%。此外,relief-BHO-SVM模型比其他已知方法取得了更好的效果。与近期的乳腺癌分类研究相比,所建议的混合方法已经取得了相当不错的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1