Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2023-09-05 DOI:10.1021/acs.jpclett.3c02314
Zhen Tong*, Traian Dumitrică* and Thomas Frauenheim*, 
{"title":"Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn","authors":"Zhen Tong*,&nbsp;Traian Dumitrică* and Thomas Frauenheim*,&nbsp;","doi":"10.1021/acs.jpclett.3c02314","DOIUrl":null,"url":null,"abstract":"<p >Using <i>ab initio</i> lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ<sub><i>L</i></sub>) of Li<sub>5</sub>Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κ<sub><i>L</i></sub> by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κ<sub><i>L</i></sub> values of 0.857, 0.599, and 0.961 W/mK for the experimental <i>Cmcm</i> phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted <i>Immm</i> phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κ<sub><i>L</i></sub> temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 36","pages":"8139–8144"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02314","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最富锂二元锡化晶体Li5Sn的本质低导热性
利用从头算晶格动力学和统一热传递理论,计算了新合成的锂离子电池晶体材料Li5Sn的晶格热导率(κL)。富锂环境中的弱键导致了光学声子模式的明显软化、温度诱导硬化和强非调和性。通过计算作用于重归一化声子频率和影响声子寿命的三声子和四声子散射的与温度相关的原子间力常数,这种复杂性在κL的类粒子和类玻璃组分中被捕获。我们预测沿主要晶体学方向,实验Cmcm相的室温κL值为0.857、0.599和0.961 W/mK,理论预测Immm相的室温κL值为0.996、0.908和1.385 W/mK。两相均表现出复杂的晶体行为,室温以上玻璃样输运率超过20%,且具有异常的κL温度依赖性。我们的结果可以用来为锂离子电池的系统级热模型提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Different Photodissociation Mechanisms in Fe(CO)5 and Cr(CO)6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations Protonation Weakens the Influence of Ribose on Triplet Decay of 2-Thiocytidine Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate Upconversion on the Micrometer Scale: Impact of Local Heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1