Effect of Administration Route and Length of Exposure on Pharmacokinetics and Metabolism of Diltiazem in Dogs

P. Yeung, Jdz Feng, S. Buckley
{"title":"Effect of Administration Route and Length of Exposure on Pharmacokinetics and Metabolism of Diltiazem in Dogs","authors":"P. Yeung, Jdz Feng, S. Buckley","doi":"10.1515/DMDI.2001.18.3-4.251","DOIUrl":null,"url":null,"abstract":"The objective of this study was to systematically determine the pharmacokinetics and metabolism of diltiazem (DTZ) after a single i.v. dose, and after single and multiple oral (p.o.) doses. Four mongrel dogs (3 M, 1 F), aged 1-3 years, body weight 19-25 kg, were each given a single 30 mg dose of DTZ as a solution by i.v injection, the same dose orally from an immediate release tablet (Cardizem, Aventis Pharma, Canada, QC), and also t.i.d. for 10 doses. A 3-4 week washout period was allowed between each treatment. Blood samples (4 ml each) were obtained after each treatment from each animal via a cephalic vein at 0 (just before dosing), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, and 12.0 h post dose. Urine samples were collected for 24 h. The plasma samples were immediately separated by centrifugation and stored at -20 degrees C until analysis. The results showed that the bioavailability after a single p.o. dose of DTZ was 26+/-24%. Following a single i.v. dose, DTZ declined bi-exponentially with a terminal half-life (t1/2) of 4.2+/-1.7 h. N-Monodesmethyl DTZ (M(A)), deacetyl DTZ (M1), and deacetyl N-monodesmethyl DTZ (M2) were the major metabolites. Contrary to the results observed in clinical studies, there were no increase of plasma concentrations of DTZ after repeated doses (accumulation factor R = 0.94+/-0.51). Plasma concentrations of M1 decreased following repeated oral doses, accompanying by an increase of plasma concentrations of M2, although these changes were not statistically significant (p >0.05). This study cautions the use of mongrel dogs for direct extrapolation to humans, particularly for chronic pharmacokinetics studies of DTZ.","PeriodicalId":77889,"journal":{"name":"Reviews on drug metabolism and drug interactions","volume":"18 1","pages":"251 - 262"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/DMDI.2001.18.3-4.251","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on drug metabolism and drug interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/DMDI.2001.18.3-4.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The objective of this study was to systematically determine the pharmacokinetics and metabolism of diltiazem (DTZ) after a single i.v. dose, and after single and multiple oral (p.o.) doses. Four mongrel dogs (3 M, 1 F), aged 1-3 years, body weight 19-25 kg, were each given a single 30 mg dose of DTZ as a solution by i.v injection, the same dose orally from an immediate release tablet (Cardizem, Aventis Pharma, Canada, QC), and also t.i.d. for 10 doses. A 3-4 week washout period was allowed between each treatment. Blood samples (4 ml each) were obtained after each treatment from each animal via a cephalic vein at 0 (just before dosing), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, and 12.0 h post dose. Urine samples were collected for 24 h. The plasma samples were immediately separated by centrifugation and stored at -20 degrees C until analysis. The results showed that the bioavailability after a single p.o. dose of DTZ was 26+/-24%. Following a single i.v. dose, DTZ declined bi-exponentially with a terminal half-life (t1/2) of 4.2+/-1.7 h. N-Monodesmethyl DTZ (M(A)), deacetyl DTZ (M1), and deacetyl N-monodesmethyl DTZ (M2) were the major metabolites. Contrary to the results observed in clinical studies, there were no increase of plasma concentrations of DTZ after repeated doses (accumulation factor R = 0.94+/-0.51). Plasma concentrations of M1 decreased following repeated oral doses, accompanying by an increase of plasma concentrations of M2, although these changes were not statistically significant (p >0.05). This study cautions the use of mongrel dogs for direct extrapolation to humans, particularly for chronic pharmacokinetics studies of DTZ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
给药途径和暴露时间对地尔硫卓在犬体内药代动力学和代谢的影响
本研究的目的是系统地测定地尔硫卓(DTZ)单次静脉注射、单次和多次口服(p.o)后的药代动力学和代谢。4只杂种狗(3只M, 1只F),年龄1-3岁,体重19-25 kg,每只狗静脉注射单次30 mg的DTZ溶液,并口服相同剂量的速释片(Cardizem, Aventis Pharma, Canada, QC),同时t.d. 10剂。每次治疗之间有3-4周的洗脱期。在每次给药后0(给药前)、0.5、1.0、1.5、2.0、2.5、3.0、4.0、6.0、8.0和12.0 h,通过头静脉采集每只动物的血液样本(每只4 ml)。收集尿样24 h,血浆样品立即离心分离,-20℃保存,待分析。结果表明,单次给药后的生物利用度为26+/-24%。单次静脉给药后,DTZ呈双指数下降,终末半衰期(t1/2)为4.2+/-1.7 h。n -单甲基DTZ (M(a))、去乙酰基DTZ (M1)和去乙酰基n -单甲基DTZ (M2)是DTZ的主要代谢产物。与临床研究结果相反,重复给药后血浆DTZ浓度没有增加(积累因子R = 0.94+/-0.51)。重复口服给药后血浆M1浓度下降,同时血浆M2浓度升高,但这些变化无统计学意义(p < 0.05)。这项研究提醒使用杂种狗直接外推到人类,特别是慢性药代动力学研究的DTZ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micronutrients: Metabolic Tuning - Prevention - Therapy Determination of the Antimicrobial Properties of Oligo-2-hydroxy-l-naphthaldehyde Time-Dependent Pharmacokinetic Interaction Between Zidovudine and Rifampicin Following Oral Administration of the Combination at 1000 and 2200 Hours The Effect of Drugs and Toxins on the Process of Apoptosis Roles of Cytochrome P450 in Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1