DETERMINATION OF QUALITY AND RIPENING STAGES OF ‘PACOVAN’ BANANAS USING VIS-NIR SPECTROSCOPY AND MACHINE LEARNING

IF 0.9 4区 农林科学 Q3 AGRICULTURAL ENGINEERING Engenharia Agricola Pub Date : 2022-01-01 DOI:10.1590/1809-4430-eng.agric.v42nepe20210160/2022
Iara J. S. Ferreira, Sarah L. F. de O. Almeida, Acácio Figueiredo Neto, D. D. S. Costa
{"title":"DETERMINATION OF QUALITY AND RIPENING STAGES OF ‘PACOVAN’ BANANAS USING VIS-NIR SPECTROSCOPY AND MACHINE LEARNING","authors":"Iara J. S. Ferreira, Sarah L. F. de O. Almeida, Acácio Figueiredo Neto, D. D. S. Costa","doi":"10.1590/1809-4430-eng.agric.v42nepe20210160/2022","DOIUrl":null,"url":null,"abstract":"This paper aimed to develop predictive models to determine total soluble solids, firmness, and ripening stages of 'Pacovan' bananas, using Vis-NIR spectroscopy and machine learning algorithms. A total of 384 bananas were divided into different days of storage (0, 3, 6, 9, 12, 15, 18, and 21 days) at two temperatures (25°C and 20°C). Bananas were subjected to spectral analysis using a spectrometer operating in spectral range of 350 – 2500 nm. Physicochemical parameters of quality, total soluble solids, and firmness were determined by reference analyses. Different machine learning algorithms were used to develop regression models and supervised classification. The best model for total soluble solids was the Random Forest with variable selection, showing an R 2cv of 0.90 and RMSECV of 2.31. The best model for firmness was the Support Vector Machine with variable selection, showing an R 2cv of 0.84 and RMSECV of 7.98. The best classification model for different ripening stages was the Multilayer Perceptron with variable selection, which achieved the precision of 74.22%. Therefore, Vis-NIR spectroscopy associated with machine learning algorithms is a promising tool for monitoring the quality and ripening stages of 'Pacovan' bananas.","PeriodicalId":49078,"journal":{"name":"Engenharia Agricola","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia Agricola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v42nepe20210160/2022","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aimed to develop predictive models to determine total soluble solids, firmness, and ripening stages of 'Pacovan' bananas, using Vis-NIR spectroscopy and machine learning algorithms. A total of 384 bananas were divided into different days of storage (0, 3, 6, 9, 12, 15, 18, and 21 days) at two temperatures (25°C and 20°C). Bananas were subjected to spectral analysis using a spectrometer operating in spectral range of 350 – 2500 nm. Physicochemical parameters of quality, total soluble solids, and firmness were determined by reference analyses. Different machine learning algorithms were used to develop regression models and supervised classification. The best model for total soluble solids was the Random Forest with variable selection, showing an R 2cv of 0.90 and RMSECV of 2.31. The best model for firmness was the Support Vector Machine with variable selection, showing an R 2cv of 0.84 and RMSECV of 7.98. The best classification model for different ripening stages was the Multilayer Perceptron with variable selection, which achieved the precision of 74.22%. Therefore, Vis-NIR spectroscopy associated with machine learning algorithms is a promising tool for monitoring the quality and ripening stages of 'Pacovan' bananas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可见光-近红外光谱和机器学习技术测定“pacovan”香蕉的质量和成熟阶段
本文旨在利用Vis-NIR光谱和机器学习算法建立预测模型,以确定“Pacovan”香蕉的总可溶性固形物、硬度和成熟阶段。384根香蕉在25°C和20°C两种温度下被分为不同的贮藏天数(0、3、6、9、12、15、18和21天)。利用350 - 2500nm光谱范围的光谱仪对香蕉进行光谱分析。采用参比分析法测定了其理化参数、总可溶性固形物和硬度。使用不同的机器学习算法来开发回归模型和监督分类。总可溶性固结物的最佳模型是随机森林模型,其r2cv为0.90,RMSECV为2.31。最好的坚定模型是支持向量机与变量选择,显示r2cv为0.84和RMSECV为7.98。不同成熟阶段的最佳分类模型是带有变量选择的多层感知器,准确率达到74.22%。因此,与机器学习算法相结合的Vis-NIR光谱是监测“Pacovan”香蕉质量和成熟阶段的一种很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engenharia Agricola
Engenharia Agricola AGRICULTURAL ENGINEERING-
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: A revista Engenharia Agrícola existe desde 1972 como o principal veículo editorial de caráter técnico-científico da SBEA - Associação Brasileira de Engenharia Agrícola. Publicar artigos científicos, artigos técnicos e revisões bibliográficas inéditos, fomentando a divulgação do conhecimento prático e científico na área de Engenharia Agrícola.
期刊最新文献
TECHNICAL AND ECONOMIC FEASIBILITY OF OFF-GRID PHOTOVOLTAIC SYSTEMS FOR IRRIGATION EFFECT OF RICE STUBBLE ON SOIL COMPACTION PROPERTIES OF A CRAWLER UNDERGOING COMBINE HARVESTER HARVESTING EFFECT OF CONSTANT VOLUME STRUCTURE PARAMETERS ON GRAIN VENTILATION DRYING THE INFLUENCE OF SEED VARIETY AND HIGH SEEDING SPEED ON PNEUMATIC PRECISION SEED METERING INTELLIGENT AUTOMATED MONITORING INTEGRATED WITH ANIMAL PRODUCTION FACILITIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1