Stabilization of an MQ-3 Sensor for Ethanol Measurement in Cowpea Seeds

IF 0.9 4区 农林科学 Q3 AGRICULTURAL ENGINEERING Engenharia Agricola Pub Date : 2023-04-01 DOI:10.1590/1809-4430-eng.agric.v43n2e20200046/2023
J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro
{"title":"Stabilization of an MQ-3 Sensor for Ethanol Measurement in Cowpea Seeds","authors":"J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro","doi":"10.1590/1809-4430-eng.agric.v43n2e20200046/2023","DOIUrl":null,"url":null,"abstract":"The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.","PeriodicalId":49078,"journal":{"name":"Engenharia Agricola","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia Agricola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20200046/2023","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MQ-3型豇豆种子乙醇含量传感器的稳定性研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engenharia Agricola
Engenharia Agricola AGRICULTURAL ENGINEERING-
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: A revista Engenharia Agrícola existe desde 1972 como o principal veículo editorial de caráter técnico-científico da SBEA - Associação Brasileira de Engenharia Agrícola. Publicar artigos científicos, artigos técnicos e revisões bibliográficas inéditos, fomentando a divulgação do conhecimento prático e científico na área de Engenharia Agrícola.
期刊最新文献
TECHNICAL AND ECONOMIC FEASIBILITY OF OFF-GRID PHOTOVOLTAIC SYSTEMS FOR IRRIGATION EFFECT OF RICE STUBBLE ON SOIL COMPACTION PROPERTIES OF A CRAWLER UNDERGOING COMBINE HARVESTER HARVESTING EFFECT OF CONSTANT VOLUME STRUCTURE PARAMETERS ON GRAIN VENTILATION DRYING THE INFLUENCE OF SEED VARIETY AND HIGH SEEDING SPEED ON PNEUMATIC PRECISION SEED METERING INTELLIGENT AUTOMATED MONITORING INTEGRATED WITH ANIMAL PRODUCTION FACILITIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1