A ROTARY BLADE DESIGN FOR PADDY FIELDS WITH LONG RICE STRAW BASED ON EDEM

Chengcheng Ma, Shujuan Yi, Guixiang Tao
{"title":"A ROTARY BLADE DESIGN FOR PADDY FIELDS WITH LONG RICE STRAW BASED ON EDEM","authors":"Chengcheng Ma, Shujuan Yi, Guixiang Tao","doi":"10.1590/1809-4430-eng.agric.v43n3e20220062/2023","DOIUrl":null,"url":null,"abstract":"The paddy field machine uses excessive power during paddy field preparation because of the high distribution density of rice straw. In this study, a rotary blade is created to address this problem. The structural parameters of the rotary blade were designed and the dynamic analysis of the rotary blade's soil-cutting process was completed to establish a model of the rotary blade's power consumption. Through the model, the primary factors influencing the rotary blade's power consumption were identified. A composite soil bin model of rice straw‒muddy layer‒bottom soil was established in EDEM software, with the bending angle of the front blade, the working width of a single blade, and the thickness of the blade as the test factors. The straw burying rate, power consumption, and surface flatness after rotary tillage were used as evaluation indicators to conduct multi-factor simulation tests on the composite soil bin model. The optimized analysis of the test data showed that the optimal geometric parameters for the rotary blade were 49 mm working width, 108° front blade bending angle, and 4 mm blade thickness. A field verification test was carried out on the optimized rotary blade, and the test results showed that the surface flatness after rotary tillage was 3.25 cm, the qualified rate of rotary tillage depth was 93.3%, and the degree of mud mixing was 3.41 kg/dm 3 , which was suitable for the land preparation requirements of paddy fields.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20220062/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paddy field machine uses excessive power during paddy field preparation because of the high distribution density of rice straw. In this study, a rotary blade is created to address this problem. The structural parameters of the rotary blade were designed and the dynamic analysis of the rotary blade's soil-cutting process was completed to establish a model of the rotary blade's power consumption. Through the model, the primary factors influencing the rotary blade's power consumption were identified. A composite soil bin model of rice straw‒muddy layer‒bottom soil was established in EDEM software, with the bending angle of the front blade, the working width of a single blade, and the thickness of the blade as the test factors. The straw burying rate, power consumption, and surface flatness after rotary tillage were used as evaluation indicators to conduct multi-factor simulation tests on the composite soil bin model. The optimized analysis of the test data showed that the optimal geometric parameters for the rotary blade were 49 mm working width, 108° front blade bending angle, and 4 mm blade thickness. A field verification test was carried out on the optimized rotary blade, and the test results showed that the surface flatness after rotary tillage was 3.25 cm, the qualified rate of rotary tillage depth was 93.3%, and the degree of mud mixing was 3.41 kg/dm 3 , which was suitable for the land preparation requirements of paddy fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一种基于dem的长秆稻田旋转叶片设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1