A Strength Behavior Approach for 3Y-TZP Ceramics Dental Implants Based on Finite Element Simulations

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research-ibero-american Journal of Materials Pub Date : 2023-03-03 DOI:10.1590/1980-5373-mr-2022-0110
P. A. Ward, Fernando Araújo da Costa Ward, Thielly Machareth Ward, C. Santos, R. Freitas, L. P. Moreira
{"title":"A Strength Behavior Approach for 3Y-TZP Ceramics Dental Implants Based on Finite Element Simulations","authors":"P. A. Ward, Fernando Araújo da Costa Ward, Thielly Machareth Ward, C. Santos, R. Freitas, L. P. Moreira","doi":"10.1590/1980-5373-mr-2022-0110","DOIUrl":null,"url":null,"abstract":"This study is based on the numerical simulation of the mechanical response of yttrium-stabilized zirconia ceramic (3Y-TZP) dental implants as a function of their intrinsic geometry and masticatory loads. Samples (n=20) of 3Y-TZP ceramics were compacted, sintered at 1500 °C - 2h, and characterized by relative density, X-Ray diffraction (XRD), and scanning electron microscopy (SEM). The elastic parameters (modulus of elasticity and Poisson ratio), used in the numerical simulations, were measured by the Impulse Excitation Technique, and the bending strength was obtained using piston-on-three-balls testing. An authorial implant design and, comparatively, commercial implant CAD models were used in this study as an initial geometry of dental implant in a typical adult mandible anatomy. From CAD and CAE techniques, finite element models were generated for all implant geometries. Loading cases were considered based on different intensities (100N to 500N) and orientation angles (45° or 90°) to reproduce the human masticatory efforts. The numerical predictions were compared with finite element simulations of gold-standard titanium-based implants. The investigated 3Y-TZP sintered ceramics presented high densification (> 99%), with a microstructure formed by submicron equiaxed tetragonal zirconia grains. The 3Y-TZP average bending strength obtained from piston-on-three-balls testing is 1192 ± 99 MPa. For both dental implant geometries, the zirconia implants showed average strength of less than 550 MPa, which, in turn, is independent of the masticatory load value or orientation angle. All finite element predictions are 50% inferior to the corresponding measured flexural strength values and preliminarily enable the 3Y-TZP ceramics for dental implant applications without fracture risk.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0110","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is based on the numerical simulation of the mechanical response of yttrium-stabilized zirconia ceramic (3Y-TZP) dental implants as a function of their intrinsic geometry and masticatory loads. Samples (n=20) of 3Y-TZP ceramics were compacted, sintered at 1500 °C - 2h, and characterized by relative density, X-Ray diffraction (XRD), and scanning electron microscopy (SEM). The elastic parameters (modulus of elasticity and Poisson ratio), used in the numerical simulations, were measured by the Impulse Excitation Technique, and the bending strength was obtained using piston-on-three-balls testing. An authorial implant design and, comparatively, commercial implant CAD models were used in this study as an initial geometry of dental implant in a typical adult mandible anatomy. From CAD and CAE techniques, finite element models were generated for all implant geometries. Loading cases were considered based on different intensities (100N to 500N) and orientation angles (45° or 90°) to reproduce the human masticatory efforts. The numerical predictions were compared with finite element simulations of gold-standard titanium-based implants. The investigated 3Y-TZP sintered ceramics presented high densification (> 99%), with a microstructure formed by submicron equiaxed tetragonal zirconia grains. The 3Y-TZP average bending strength obtained from piston-on-three-balls testing is 1192 ± 99 MPa. For both dental implant geometries, the zirconia implants showed average strength of less than 550 MPa, which, in turn, is independent of the masticatory load value or orientation angle. All finite element predictions are 50% inferior to the corresponding measured flexural strength values and preliminarily enable the 3Y-TZP ceramics for dental implant applications without fracture risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限元模拟的3Y-TZP陶瓷牙种植体强度行为研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Influence of Substrate Temperature on Microstructure of Zirconium Silicon Nitride Thin Films Deposited by Reactive Magnetron Sputtering Evaluation of Microstructural, Mechanical and Corrosion Behaviours of Laminated AA6061/AA7075 Metal Matrix Composites Build by Friction Stir Additive Manufacturing for Structural Applications Effect of Alkali Treatment of Alstonia macrophylla (AS) fiber on Dynamic Mechanical and Machinability Properties of Polypropylene (PP) Composites reinforced with Unidirectional AS fiber Experimental Characterization of Hydrogen Trapping on API 5CT P110 Steel. Part. I: Effect on Hydrogen Embrittlement Susceptibility Electrodeposited Zn-Ni-sisal Nanocrystals Composite Coatings - Morphology, Structure and Corrosion Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1