Wear Behavior of Brass Based Composite Reinforced with SiC and Produced by Stir Casting Process

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research-ibero-american Journal of Materials Pub Date : 2023-03-27 DOI:10.1590/1980-5373-mr-2022-0196
E. Mohan, G. Anbuchezhiyan, R. Pugazhenthi, F. P. Prakash
{"title":"Wear Behavior of Brass Based Composite Reinforced with SiC and Produced by Stir Casting Process","authors":"E. Mohan, G. Anbuchezhiyan, R. Pugazhenthi, F. P. Prakash","doi":"10.1590/1980-5373-mr-2022-0196","DOIUrl":null,"url":null,"abstract":"The current investigation presents the wear-worn surface analysis of a silicon carbide-reinforced brass-based composite synthesized by stir casting. Wear behavior of the brass composite pin was analyzed by disc tribometer. Wear characterization studies and confirmation of elemental composition are investigated through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) respectively. The worn surface of the synthesized brass composite was analyzed using atomic force microscopy (AFM). The aim of the investigation is to examine the surface morphology of the worn specimen. Based on the input constraints, the wear rate ranges from 0.0135 to 0.0893 mm 3 /min. The applied load is the predominant factor in the wear rate (83.75%). Sliding velocity has a minor effect on wear rate (1.06%). The improved surface roughness of 15.27 nm was produced on the worn surface. The novelty of the research work is to study the various surface parameters of the worn surface, such as roughness average, root mean square roughness, maximum height of the roughness, skewness, and kurtosis. These parameters were analyzed at different wear-worn surfaces of the synthesized brass composite. The wear-worn surface was deeply investigated and incorporated with SEM and AFM analysis.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0196","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

The current investigation presents the wear-worn surface analysis of a silicon carbide-reinforced brass-based composite synthesized by stir casting. Wear behavior of the brass composite pin was analyzed by disc tribometer. Wear characterization studies and confirmation of elemental composition are investigated through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) respectively. The worn surface of the synthesized brass composite was analyzed using atomic force microscopy (AFM). The aim of the investigation is to examine the surface morphology of the worn specimen. Based on the input constraints, the wear rate ranges from 0.0135 to 0.0893 mm 3 /min. The applied load is the predominant factor in the wear rate (83.75%). Sliding velocity has a minor effect on wear rate (1.06%). The improved surface roughness of 15.27 nm was produced on the worn surface. The novelty of the research work is to study the various surface parameters of the worn surface, such as roughness average, root mean square roughness, maximum height of the roughness, skewness, and kurtosis. These parameters were analyzed at different wear-worn surfaces of the synthesized brass composite. The wear-worn surface was deeply investigated and incorporated with SEM and AFM analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搅拌铸造法制备SiC增强黄铜基复合材料的磨损性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Influence of Substrate Temperature on Microstructure of Zirconium Silicon Nitride Thin Films Deposited by Reactive Magnetron Sputtering Evaluation of Microstructural, Mechanical and Corrosion Behaviours of Laminated AA6061/AA7075 Metal Matrix Composites Build by Friction Stir Additive Manufacturing for Structural Applications Effect of Alkali Treatment of Alstonia macrophylla (AS) fiber on Dynamic Mechanical and Machinability Properties of Polypropylene (PP) Composites reinforced with Unidirectional AS fiber Experimental Characterization of Hydrogen Trapping on API 5CT P110 Steel. Part. I: Effect on Hydrogen Embrittlement Susceptibility Electrodeposited Zn-Ni-sisal Nanocrystals Composite Coatings - Morphology, Structure and Corrosion Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1