G. Iulianelli, Lucas Viana Costa, Paulo Sergio C.P. da Silva, F. D. Santos
{"title":"Evaluation of Fully Biodegradable PLA/PHB Blend Filled with Microcrystalline Celluloses","authors":"G. Iulianelli, Lucas Viana Costa, Paulo Sergio C.P. da Silva, F. D. Santos","doi":"10.1590/1980-5373-mr-2022-0433","DOIUrl":null,"url":null,"abstract":"In this work, biodegradable biocomposites were developed using PLA/PHB blend as matrix and two types of microcrystalline cellulose as filler at three different contents. The biocomposites were evaluated regarding their thermal and morphological characteristics and molecular dynamic behavior. It was seen that cellulose addition did not promote significant changes in the Tm, Tc and Tcc in the matrix. On the other hand, XRD and TGA revealed that the addition of the highest content (7 wt%) of cellulose fillers resulted in a more significant decrease in crystallinity and thermal stability of the PLA/PHB matrix, suggesting a formation of filler aggregates. This indication was confirmed by TD-NMR, whose results pointed to a greater heterogeneity molecular in the samples containing higher cellulose contents. Therefore, this technique proved to be a relevant and complementary tool for the characterization of composites materials, contributing to determinate the most appropriate filler content introduced in a polymer matrix.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0433","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, biodegradable biocomposites were developed using PLA/PHB blend as matrix and two types of microcrystalline cellulose as filler at three different contents. The biocomposites were evaluated regarding their thermal and morphological characteristics and molecular dynamic behavior. It was seen that cellulose addition did not promote significant changes in the Tm, Tc and Tcc in the matrix. On the other hand, XRD and TGA revealed that the addition of the highest content (7 wt%) of cellulose fillers resulted in a more significant decrease in crystallinity and thermal stability of the PLA/PHB matrix, suggesting a formation of filler aggregates. This indication was confirmed by TD-NMR, whose results pointed to a greater heterogeneity molecular in the samples containing higher cellulose contents. Therefore, this technique proved to be a relevant and complementary tool for the characterization of composites materials, contributing to determinate the most appropriate filler content introduced in a polymer matrix.