High-Quality and Low-Complexity Polar-Coded Radio-Wave Encrypted Modulation Utilizing Multipurpose Frozen Bits

IF 0.7 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Transactions on Communications Pub Date : 2023-01-01 DOI:10.1587/transcom.2022ebt0007
Keisuke Asano, T. Abe, Kenta Kato, E. Okamoto, Tetsuya Yamamoto
{"title":"High-Quality and Low-Complexity Polar-Coded Radio-Wave Encrypted Modulation Utilizing Multipurpose Frozen Bits","authors":"Keisuke Asano, T. Abe, Kenta Kato, E. Okamoto, Tetsuya Yamamoto","doi":"10.1587/transcom.2022ebt0007","DOIUrl":null,"url":null,"abstract":"SUMMARY In recent years, physical layer security (PLS), which utilizes the inherent randomness of wireless signals to perform encryption at the physical layer, has attracted attention. We propose chaos modulation as a PLS technique. In addition, a method for encryption using a special encoder of polar codes has been proposed (PLS-polar), in which PLS can be easily achieved by encrypting the frozen bits of a polar code. Previously, we proposed a chaos-modulated polar code transmission method that can achieve high-quality and improved-security transmission using frozen bit encryption in polar codes. However, in principle, chaos modulation requires maximum likelihood sequence estimation (MLSE) for demodulation, and a large number of candidates for MLSE causes characteristic degradation in the low signal-to-noise ratio region in chaos polar transmission. To address this problem, in this study, we propose a versatile frozen bit method for polar codes, in which the frozen bits are also used to reduce the number of MLSE candidates for chaos demodulation. The numerical results show that the proposed method shows a performance improvement by 1.7 dB at a block error rate of 10 -3 with a code length of 512 and a code rate of 0.25 compared with that of conventional methods. We also show that the complexity of demodulation can be reduced to 1/16 of that of the conventional method without degrading computational security. Furthermore, we clarified the effective region of the proposed method when the code length and code rate were varied.","PeriodicalId":50385,"journal":{"name":"IEICE Transactions on Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1587/transcom.2022ebt0007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SUMMARY In recent years, physical layer security (PLS), which utilizes the inherent randomness of wireless signals to perform encryption at the physical layer, has attracted attention. We propose chaos modulation as a PLS technique. In addition, a method for encryption using a special encoder of polar codes has been proposed (PLS-polar), in which PLS can be easily achieved by encrypting the frozen bits of a polar code. Previously, we proposed a chaos-modulated polar code transmission method that can achieve high-quality and improved-security transmission using frozen bit encryption in polar codes. However, in principle, chaos modulation requires maximum likelihood sequence estimation (MLSE) for demodulation, and a large number of candidates for MLSE causes characteristic degradation in the low signal-to-noise ratio region in chaos polar transmission. To address this problem, in this study, we propose a versatile frozen bit method for polar codes, in which the frozen bits are also used to reduce the number of MLSE candidates for chaos demodulation. The numerical results show that the proposed method shows a performance improvement by 1.7 dB at a block error rate of 10 -3 with a code length of 512 and a code rate of 0.25 compared with that of conventional methods. We also show that the complexity of demodulation can be reduced to 1/16 of that of the conventional method without degrading computational security. Furthermore, we clarified the effective region of the proposed method when the code length and code rate were varied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多用途冻结位的高质量和低复杂度极编码无线电波加密调制
近年来,利用无线信号固有的随机性在物理层进行加密的物理层安全技术备受关注。我们提出混沌调制作为PLS技术。此外,还提出了一种使用特殊的极性编码编码器(PLS-polar)进行加密的方法,其中通过加密极性编码的冻结位可以很容易地实现PLS。在此之前,我们提出了一种混沌调制的极化码传输方法,该方法可以在极化码中使用冻结位加密来实现高质量和提高安全性的传输。然而,混沌调制原则上需要最大似然序列估计(MLSE)进行解调,而MLSE的大量候选信号会导致混沌极极传输中低信噪比区域的特性退化。为了解决这个问题,在本研究中,我们提出了一种通用的极地码冻结位方法,其中冻结位也用于减少混沌解调的MLSE候选数。数值结果表明,在码长为512、码率为0.25、分组错误率为10 -3的情况下,与传统方法相比,该方法的性能提高了1.7 dB。我们还表明,在不降低计算安全性的情况下,解调的复杂性可以降低到传统方法的1/16。进一步明确了不同码长和码率时该方法的有效区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Transactions on Communications
IEICE Transactions on Communications 工程技术-电信学
CiteScore
1.40
自引率
28.60%
发文量
101
审稿时长
3.7 months
期刊介绍: The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including: - Fundamental Theories for Communications - Energy in Electronics Communications - Transmission Systems and Transmission Equipment for Communications - Optical Fiber for Communications - Fiber-Optic Transmission for Communications - Network System - Network - Internet - Network Management/Operation - Antennas and Propagation - Electromagnetic Compatibility (EMC) - Wireless Communication Technologies - Terrestrial Wireless Communication/Broadcasting Technologies - Satellite Communications - Sensing - Navigation, Guidance and Control Systems - Space Utilization Systems for Communications - Multimedia Systems for Communication
期刊最新文献
IEICE Transactions on Communications: Editor's Message 1-D and 2-D Beam Steering Arrays Antennas Fed by a Compact Beamforming Network for Millimeter-Wave Communication Parameter Selection and Radar Fusion for Tracking in Roadside Units User Scheduling at Base Station Cluster Boundary for Massive MIMO Downlink Transmission Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1