Akio Kawabata, Takuya Tojo, Bijoy Chand Chatterjee, E. Oki
{"title":"A Network Design Scheme in Delay Sensitive Monitoring Services","authors":"Akio Kawabata, Takuya Tojo, Bijoy Chand Chatterjee, E. Oki","doi":"10.1587/transcom.2023ebp3010","DOIUrl":null,"url":null,"abstract":"SUMMARY Mission-criticalmonitoringservices, suchasfindingcrim-inals with a monitoring camera, require rapid detection of newly updated data, where suppressing delay is desirable. Taking this direction, this paper proposes a network design scheme to minimize this delay for monitoring services that consist of Internet-of-Things (IoT) devices located at terminal endpoints (TEs), databases (DB), and applications (APLs). The proposed scheme determines the allocation of DB and APLs and the selection of the server to which TE belongs. DB and APL are allocated on an optimal server from multiple servers in the network. We formulate the proposed network design scheme as an integer linear programming problem. The delay reduction effect of the proposed scheme is evaluated under two network topologies and a monitoring camera system network. In the two network topologies, the delays of the proposed scheme are 78 and 80 percent, compared to that of the conventional scheme. In the monitoring camera system network, the delay of the proposed scheme is 77 percent compared to that of the conventional scheme. These results indicate that the proposed scheme reduces the delay compared to the conventional scheme where APLs are located near TEs. The computation time of the proposed scheme is acceptable for the design phase before the service is launched. The proposed scheme can contribute to a network design that detects newly added objects quickly in the monitoring services.","PeriodicalId":50385,"journal":{"name":"IEICE Transactions on Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1587/transcom.2023ebp3010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARY Mission-criticalmonitoringservices, suchasfindingcrim-inals with a monitoring camera, require rapid detection of newly updated data, where suppressing delay is desirable. Taking this direction, this paper proposes a network design scheme to minimize this delay for monitoring services that consist of Internet-of-Things (IoT) devices located at terminal endpoints (TEs), databases (DB), and applications (APLs). The proposed scheme determines the allocation of DB and APLs and the selection of the server to which TE belongs. DB and APL are allocated on an optimal server from multiple servers in the network. We formulate the proposed network design scheme as an integer linear programming problem. The delay reduction effect of the proposed scheme is evaluated under two network topologies and a monitoring camera system network. In the two network topologies, the delays of the proposed scheme are 78 and 80 percent, compared to that of the conventional scheme. In the monitoring camera system network, the delay of the proposed scheme is 77 percent compared to that of the conventional scheme. These results indicate that the proposed scheme reduces the delay compared to the conventional scheme where APLs are located near TEs. The computation time of the proposed scheme is acceptable for the design phase before the service is launched. The proposed scheme can contribute to a network design that detects newly added objects quickly in the monitoring services.
期刊介绍:
The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including:
- Fundamental Theories for Communications
- Energy in Electronics Communications
- Transmission Systems and Transmission Equipment for Communications
- Optical Fiber for Communications
- Fiber-Optic Transmission for Communications
- Network System
- Network
- Internet
- Network Management/Operation
- Antennas and Propagation
- Electromagnetic Compatibility (EMC)
- Wireless Communication Technologies
- Terrestrial Wireless Communication/Broadcasting Technologies
- Satellite Communications
- Sensing
- Navigation, Guidance and Control Systems
- Space Utilization Systems for Communications
- Multimedia Systems for Communication