High Temperature Strengthening Mechanisms in the Alloy Platinum- 5% Rhodium DPH

K. Teichmann, C. Liebscher, R. Völkl, S. Vorberg, U. Glatzel
{"title":"High Temperature Strengthening Mechanisms in the Alloy Platinum- 5% Rhodium DPH","authors":"K. Teichmann, C. Liebscher, R. Völkl, S. Vorberg, U. Glatzel","doi":"10.1595/147106711X591971","DOIUrl":null,"url":null,"abstract":"To improve the high temperature properties, platinum can be hardened by solid solution and/or oxide parti-cles. The investigated alloy, dispersion hardened plati-num-5% rhodium (Pt-5%Rh DPH), was produced via melting and subsequent annealing of the semi-fi nished product in order to obtain an oxide particle dispersion. Despite the relatively large oxide particles formed in this process, the creep strength is much higher in com-parison to conventional Pt-5%Rh. The aim of this paper is to study the strengthening mechanisms in the alloy Pt-5%Rh DPH by transmission and scanning electron microscopy. The size distribution of oxide particles shows a bimodal distribution, and the average oxide particle diameter is 315 nm for particles larger than 150 nm. For particles between 25 nm and 150 nm the average diameter is 49 nm. The size ranges of oxide par-ticles are not substantially affected by high temperature creep deformation, but particles of","PeriodicalId":20208,"journal":{"name":"Platinum Metals Review","volume":"282 1","pages":"217-224"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1595/147106711X591971","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platinum Metals Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/147106711X591971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

To improve the high temperature properties, platinum can be hardened by solid solution and/or oxide parti-cles. The investigated alloy, dispersion hardened plati-num-5% rhodium (Pt-5%Rh DPH), was produced via melting and subsequent annealing of the semi-fi nished product in order to obtain an oxide particle dispersion. Despite the relatively large oxide particles formed in this process, the creep strength is much higher in com-parison to conventional Pt-5%Rh. The aim of this paper is to study the strengthening mechanisms in the alloy Pt-5%Rh DPH by transmission and scanning electron microscopy. The size distribution of oxide particles shows a bimodal distribution, and the average oxide particle diameter is 315 nm for particles larger than 150 nm. For particles between 25 nm and 150 nm the average diameter is 49 nm. The size ranges of oxide par-ticles are not substantially affected by high temperature creep deformation, but particles of
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂- 5%铑DPH合金的高温强化机理
为了改善高温性能,铂可以通过固溶体和/或氧化物颗粒硬化。通过对半成品的熔融和随后的退火,制备了分散硬化的铂-num-5%铑(Pt-5%Rh DPH)合金,以获得氧化物颗粒分散。尽管在此过程中形成了相对较大的氧化物颗粒,但与常规Pt-5%Rh相比,蠕变强度要高得多。采用透射电镜和扫描电镜研究了Pt-5%Rh DPH合金的强化机理。粒径分布呈双峰分布,粒径大于150 nm的平均粒径为315 nm。对于25纳米到150纳米之间的粒子,平均直径为49纳米。高温蠕变对氧化颗粒的粒径范围影响不大,但对氧化颗粒的粒径范围影响不大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Platinum Metals Review
Platinum Metals Review CHEMISTRY, PHYSICAL-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Recent Research and Developments Related to Near-Equiatomic Titanium-Platinum Alloys for High-Temperature Applications Hydrogen and Fuel Cell Technologies at the Hydrogen South Africa (HySA) Systems Competence Centre "Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments" Chernyaev 2013: XX International Chernyaev Conference on Chemistry, Analysis and Technology of Platinum Group Metals Dennis Dowden Commemoration: Catalysis - from Fundamentals to Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1