Joe Staddon, Joost Smit, Zinovia Skoufa, David Watson
{"title":"Chemical Networks: A Methodology to Rapidly Assess the Environmental Impact of Chemical Processes","authors":"Joe Staddon, Joost Smit, Zinovia Skoufa, David Watson","doi":"10.1595/205651322x16594453018855","DOIUrl":null,"url":null,"abstract":"As the chemicals industry transitions towards a net zero future, rapid assessment of the sustainability metrics of different process results will be essential to support investment decisions in innovation and deployment. Life Cycle Analysis (LCA) offers the gold standard for process assessment, but LCA can take weeks or months to complete, with incomplete databases and inflexibility in comparing different chemical pathways.In this study, we demonstrate an alternative and complementary methodology. By simplifying the metrics used to describe chemical processes, each process may be linked to another by its feedstocks and products. This generates a network of the chemical industry, which may be investigated using graph theory principles. A case study of the plastics industry is provided, using publicly available information to quantitively compare with a more formalised and detailed LCA approach.This methodology proves useful for quickly estimating the carbon intensity and water footprint of thousands of routes. Further development, such as including Scope 3 emissions and additional industrial data, may further improve the methodology.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651322x16594453018855","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
As the chemicals industry transitions towards a net zero future, rapid assessment of the sustainability metrics of different process results will be essential to support investment decisions in innovation and deployment. Life Cycle Analysis (LCA) offers the gold standard for process assessment, but LCA can take weeks or months to complete, with incomplete databases and inflexibility in comparing different chemical pathways.In this study, we demonstrate an alternative and complementary methodology. By simplifying the metrics used to describe chemical processes, each process may be linked to another by its feedstocks and products. This generates a network of the chemical industry, which may be investigated using graph theory principles. A case study of the plastics industry is provided, using publicly available information to quantitively compare with a more formalised and detailed LCA approach.This methodology proves useful for quickly estimating the carbon intensity and water footprint of thousands of routes. Further development, such as including Scope 3 emissions and additional industrial data, may further improve the methodology.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.