H. Macpherson, Toby Hodges, Moyahabo Hellen Chuma, Connor Sherwin, Urša Podbevšek, Katie Rigg, V. Celorrio, A. Russell, E. C. Corbos
{"title":"Cathodes for electrochemical CO2 reduction to C2+ products","authors":"H. Macpherson, Toby Hodges, Moyahabo Hellen Chuma, Connor Sherwin, Urša Podbevšek, Katie Rigg, V. Celorrio, A. Russell, E. C. Corbos","doi":"10.1595/205651323x16672291226135","DOIUrl":null,"url":null,"abstract":"This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical CO2 and CO reduction to multi-carbon (C2+) products. The major goals for the field are to increase Faradaic Efficiency for specific C2+ products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers on the catalyst microenvironment and subsequent performance.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16672291226135","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical CO2 and CO reduction to multi-carbon (C2+) products. The major goals for the field are to increase Faradaic Efficiency for specific C2+ products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers on the catalyst microenvironment and subsequent performance.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.