ChatGPT opens a new door for bioinformatics.

Pub Date : 2023-06-01 DOI:10.15302/j-qb-023-0328
Dong Xu
{"title":"ChatGPT opens a new door for bioinformatics.","authors":"Dong Xu","doi":"10.15302/j-qb-023-0328","DOIUrl":null,"url":null,"abstract":"ChatGPT is an artificial intelligence (AI) system that can perform sophisticated writing and dialogs after learning from vast amounts of linguistic data. The success of ChatGPT is phenomenal. AI-based human-machine language interaction has been at the center of AI competition in recent years. The major players in this game have been Google, Meta, and OpenAI. Google was in the best position from the outset, given its invention of Transformer (the cornerstone of all cutting-edge language models) and its significant edge in reinforcement learning. Yet, Google’s efforts in this area were rather diffusing. It kept generating language model variants with incremental innovations but failed to reach the next level. Meta has a strong AI team, including many top AI researchers in the world. Nevertheless, their faith in self-supervised learning to solve human-machine interaction did not deliver high-impact success. Conversely, OpenAI, with a small team, stayed focused on a single product line (GPT, including its latest release of GPT-4). It moved in the right direction of using human input to “align” the language model based on the Reinforcement Learning from Human Feedback (RLHF) approach. The fact that OpenAI ultimately prevailed in this game shows that the model alignment to human labeling through supervised and reinforcement learning is critical for human-machine interaction. However, a chatbot’s actions rely heavily on cues (prompts) provided by human operators. To properly utilize ChatGPT’s capabilities, prompts to instruct or mentor the chatbot must be carefully designed to get valuable, valid, and robust responses. This process becomes another “alignment” problem of using prompt engineering to best probe ChatGPT’s knowledge graph for best serving users’ needs.","PeriodicalId":74626,"journal":{"name":"","volume":"1 1","pages":"204-206"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15302/j-qb-023-0328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ChatGPT is an artificial intelligence (AI) system that can perform sophisticated writing and dialogs after learning from vast amounts of linguistic data. The success of ChatGPT is phenomenal. AI-based human-machine language interaction has been at the center of AI competition in recent years. The major players in this game have been Google, Meta, and OpenAI. Google was in the best position from the outset, given its invention of Transformer (the cornerstone of all cutting-edge language models) and its significant edge in reinforcement learning. Yet, Google’s efforts in this area were rather diffusing. It kept generating language model variants with incremental innovations but failed to reach the next level. Meta has a strong AI team, including many top AI researchers in the world. Nevertheless, their faith in self-supervised learning to solve human-machine interaction did not deliver high-impact success. Conversely, OpenAI, with a small team, stayed focused on a single product line (GPT, including its latest release of GPT-4). It moved in the right direction of using human input to “align” the language model based on the Reinforcement Learning from Human Feedback (RLHF) approach. The fact that OpenAI ultimately prevailed in this game shows that the model alignment to human labeling through supervised and reinforcement learning is critical for human-machine interaction. However, a chatbot’s actions rely heavily on cues (prompts) provided by human operators. To properly utilize ChatGPT’s capabilities, prompts to instruct or mentor the chatbot must be carefully designed to get valuable, valid, and robust responses. This process becomes another “alignment” problem of using prompt engineering to best probe ChatGPT’s knowledge graph for best serving users’ needs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT为生物信息学打开了一扇新的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1