A dissimilarity measure estimation for analyzing trajectory data

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Advanced Simulation in Science and Engineering Pub Date : 2019-01-01 DOI:10.15748/jasse.6.367
Reza Arfa, R. Yusof, P. Shabanzadeh
{"title":"A dissimilarity measure estimation for analyzing trajectory data","authors":"Reza Arfa, R. Yusof, P. Shabanzadeh","doi":"10.15748/jasse.6.367","DOIUrl":null,"url":null,"abstract":". Quantifying dissimilarity between two trajectories is a challenging problem yet it is a fundamental task with a wide range of applications. Existing dissimilarity measures are computationally expensive to calculate. We proposed a dissimilarity measure estimate for trajectory data based on deep learning methodology. One advantage of the proposed method is that it can get executed on GPU, which can significantly reduce the execution time for processing a large number of data. The proposed network is trained using synthetic data. A trajectory simulator that generates random trajectories is proposed. We used a publicly available dataset to evaluate the proposed method for the task of trajectory clustering. Our experiments show the performance of the proposed dissimilarity estimation method is comparable with well-known methods while our method is substantially faster to compute.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15748/jasse.6.367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/jasse.6.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

. Quantifying dissimilarity between two trajectories is a challenging problem yet it is a fundamental task with a wide range of applications. Existing dissimilarity measures are computationally expensive to calculate. We proposed a dissimilarity measure estimate for trajectory data based on deep learning methodology. One advantage of the proposed method is that it can get executed on GPU, which can significantly reduce the execution time for processing a large number of data. The proposed network is trained using synthetic data. A trajectory simulator that generates random trajectories is proposed. We used a publicly available dataset to evaluate the proposed method for the task of trajectory clustering. Our experiments show the performance of the proposed dissimilarity estimation method is comparable with well-known methods while our method is substantially faster to compute.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹道数据分析中的不相似测度估计
. 量化两种轨迹之间的不相似性是一个具有挑战性的问题,但也是一项具有广泛应用的基本任务。现有的不相似性度量在计算上是昂贵的。提出了一种基于深度学习方法的轨迹数据不相似性测度估计方法。该方法的一个优点是可以在GPU上执行,可以显著减少处理大量数据的执行时间。该网络使用合成数据进行训练。提出了一种生成随机轨迹的轨迹模拟器。我们使用一个公开可用的数据集来评估所提出的方法的轨迹聚类任务。实验结果表明,本文提出的不相似度估计方法的性能与已知方法相当,并且计算速度大大加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
17
期刊最新文献
Implementation and performance evaluation of a hierarchical parallel solver for saddle point problems on a GPU cluster Molecular Dynamics Simulation on Hydrogen Trapping on Tungsten Vacancy Fundamental study on magnetohydrodynamic simulation method using deep learning Semi-explicit large eddy simulation in non-reacting air/gas fuel jet flows A human motion angle prediction method using a neural network and feature-extraction-processed sEMG obtained in real time to utilize mechanical delay of sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1