Methylation Regulation of LPCAT3 Improves Osteoarthritis by Regulating ACSL4 to Inhibit Chondrocyte Ferroptosis.

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Eukaryotic Gene Expression Pub Date : 2024-01-01 DOI:10.1615/CritRevEukaryotGeneExpr.2023049244
Kaken Habaxi, Wei Wang, Maimaitiaili Taximaimaiti, Li Wang
{"title":"Methylation Regulation of LPCAT3 Improves Osteoarthritis by Regulating ACSL4 to Inhibit Chondrocyte Ferroptosis.","authors":"Kaken Habaxi, Wei Wang, Maimaitiaili Taximaimaiti, Li Wang","doi":"10.1615/CritRevEukaryotGeneExpr.2023049244","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing aging population in China, the incidence rate of knee osteoarthritis is expected to rise annually. Therefore, we conducted a study to investigate the crucial role of LPCAT3 in osteoarthritis and its underlying mechanisms. We collected samples from normal volunteers (n = 12) and patients with osteoarthritis (n = 12) at our hospital. It was observed that LPCAT3 mRNA expression was reduced and positively correlated with IL-1β mRNA expression in patients with osteoarthritis. In a mouse model, LPCAT3 mRNA and protein expression were found to be suppressed. Furthermore, in an in vitro model, the enrichment level of LPCAT3 mRNA was inhibited by a specific m6A antibody through si-METTL3. Si-METTL3 also reduced the stability of LPCAT3 mRNA in the in vitro model. The inhibition of LPCAT3 was found to exacerbate osteoarthritis in the mouse model. Additionally, LPCAT3 was shown to reduce inflammation in the in vitro model. It was also observed that LPCAT3 reduced chondrocyte ferroptosis by inhibiting mitochondrial damage. LPCAT3 protein was found to interact with ACSL4 protein, and its up-regulation suppressed ACSL4 expression in the in vitro model. ACSL4 was identified as a target of LPCAT3 for suppressing mitochondrial damage in the in vitro model. In conclusion, this study demonstrates that LPCAT3 improves osteoarthritis by regulating ACSL4 to inhibit chondrocyte ferroptosis, thus providing a novel target for the treatment of osteoarthritis.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"1 1","pages":"77-86"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023049244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing aging population in China, the incidence rate of knee osteoarthritis is expected to rise annually. Therefore, we conducted a study to investigate the crucial role of LPCAT3 in osteoarthritis and its underlying mechanisms. We collected samples from normal volunteers (n = 12) and patients with osteoarthritis (n = 12) at our hospital. It was observed that LPCAT3 mRNA expression was reduced and positively correlated with IL-1β mRNA expression in patients with osteoarthritis. In a mouse model, LPCAT3 mRNA and protein expression were found to be suppressed. Furthermore, in an in vitro model, the enrichment level of LPCAT3 mRNA was inhibited by a specific m6A antibody through si-METTL3. Si-METTL3 also reduced the stability of LPCAT3 mRNA in the in vitro model. The inhibition of LPCAT3 was found to exacerbate osteoarthritis in the mouse model. Additionally, LPCAT3 was shown to reduce inflammation in the in vitro model. It was also observed that LPCAT3 reduced chondrocyte ferroptosis by inhibiting mitochondrial damage. LPCAT3 protein was found to interact with ACSL4 protein, and its up-regulation suppressed ACSL4 expression in the in vitro model. ACSL4 was identified as a target of LPCAT3 for suppressing mitochondrial damage in the in vitro model. In conclusion, this study demonstrates that LPCAT3 improves osteoarthritis by regulating ACSL4 to inhibit chondrocyte ferroptosis, thus providing a novel target for the treatment of osteoarthritis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LPCAT3的甲基化调控通过调节ACSL4抑制软骨细胞铁凋亡改善骨关节炎
随着中国老龄化人口的不断增加,膝骨关节炎的发病率预计将逐年上升。因此,我们开展了一项研究,探讨LPCAT3在骨关节炎中的关键作用及其内在机制。我们采集了本院正常志愿者(12 人)和骨关节炎患者(12 人)的样本。结果发现,骨关节炎患者 LPCAT3 mRNA 表达减少,且与 IL-1β mRNA 表达呈正相关。在小鼠模型中,发现 LPCAT3 mRNA 和蛋白表达均受到抑制。此外,在体外模型中,特异性 m6A 抗体通过 si-METTL3 抑制了 LPCAT3 mRNA 的富集水平。Si-METTL3 还降低了体外模型中 LPCAT3 mRNA 的稳定性。在小鼠模型中,发现抑制 LPCAT3 会加重骨关节炎。此外,LPCAT3 还能减轻体外模型中的炎症反应。研究还观察到,LPCAT3 通过抑制线粒体损伤减少了软骨细胞的铁变态反应。研究发现,LPCAT3 蛋白与 ACSL4 蛋白相互作用,其上调可抑制体外模型中 ACSL4 的表达。在体外模型中,ACSL4 被确定为 LPCAT3 抑制线粒体损伤的靶点。总之,本研究证明 LPCAT3 可通过调节 ACSL4 来抑制软骨细胞的铁突变,从而改善骨关节炎,为骨关节炎的治疗提供了一个新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Eukaryotic Gene Expression
Critical Reviews in Eukaryotic Gene Expression 生物-生物工程与应用微生物
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
1 months
期刊介绍: Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource. Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.
期刊最新文献
Exosomal circ_001860 promotes colorectal cancer progression through miR-582-5p/ZEB1 axis Glycosaminoglycans (GAGs) adenogenesis factors: immunohistochemical espression in endometriosis tissues compared to the endometrium Curcumin-carbon dots suppress periodontitis via regulating METTL3/IRE1α signaling DNMT1-dependent DNA methylation of lncRNA FTX inhibits the ferroptosis of hepatocellular carcinoma A Review: The bioactivities and mechanisms of fungus extracts and compounds in colon cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1