A new oxidative derivatization method for spectrophotometric determination of Periciazine in pharmaceutical preparations

IF 0.4 Q4 CHEMISTRY, ANALYTICAL French-Ukrainian Journal of Chemistry Pub Date : 2019-12-24 DOI:10.17721/fujcv7i2p52-60
M. Blazheyevskiy, V. Moroz
{"title":"A new oxidative derivatization method for spectrophotometric determination of Periciazine in pharmaceutical preparations","authors":"M. Blazheyevskiy, V. Moroz","doi":"10.17721/fujcv7i2p52-60","DOIUrl":null,"url":null,"abstract":"A new the oxidative derivatization method by means of peroxoacid for the indirect spectrophotometric determination of Periciazine is presented. A potassium hydrogenperoxymonosulfateas a derivatizing agent for Periciazine, yielding the absorbative Periciazine sulfoxide at λmaх=362 nm is proposed. This reaction product was successfully employed for spectrophotometric determination of the Periciazine. The UV spectrophotometric determination of the Periciazine as its sulfoxide proved to be the more simple and selective method. Limit of quantification (LOQ=10S) is 2.8 µg·mL-1. The common excipients employed do not interfere in the determination of phenothiazine drug. Results of analysis of the drug dosage forms by the proposed method are in good agreement with those of the official method. RSD=1.76 % (δ","PeriodicalId":42056,"journal":{"name":"French-Ukrainian Journal of Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"French-Ukrainian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/fujcv7i2p52-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A new the oxidative derivatization method by means of peroxoacid for the indirect spectrophotometric determination of Periciazine is presented. A potassium hydrogenperoxymonosulfateas a derivatizing agent for Periciazine, yielding the absorbative Periciazine sulfoxide at λmaх=362 nm is proposed. This reaction product was successfully employed for spectrophotometric determination of the Periciazine. The UV spectrophotometric determination of the Periciazine as its sulfoxide proved to be the more simple and selective method. Limit of quantification (LOQ=10S) is 2.8 µg·mL-1. The common excipients employed do not interfere in the determination of phenothiazine drug. Results of analysis of the drug dosage forms by the proposed method are in good agreement with those of the official method. RSD=1.76 % (δ
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化衍生化分光光度法测定药物制剂中哌嗪的含量
提出了一种新的过氧化物酸氧化衍生法间接光度法测定哌嗪的方法。提出了一种以过氧单硫酸氢钾为衍生剂,在λ max =362 nm处制得吸收性Periciazine亚砜。该反应产物成功地用于分光光度法测定哌嗪。紫外分光光度法测定哌嗪亚砜是一种简便、选择性好的方法。定量限(LOQ=10S)为2.8µg·mL-1。常用赋形剂对吩噻嗪类药物的测定无干扰。该方法与官方方法的分析结果吻合较好。Rsd = 1.76% (δ
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
French-Ukrainian Journal of Chemistry
French-Ukrainian Journal of Chemistry CHEMISTRY, ANALYTICAL-
自引率
0.00%
发文量
13
审稿时长
4 weeks
期刊最新文献
Isoflavonoids Modified with Azole Heterocycles with Three Heteroatoms Complexation of 1,3-dihetaryl-5-phenyl-2-pyrazoline Derivatives with Polyvalent Metal Ions: Quantum Chemical Modeling and Experimental Investigation Development and Validation of a Simple Procedure for the Kinetic Spectrophotometric Quantitative Determination of Ceftriaxone Using Potassium Caroate Removal of Phosphates in Aqueous Solution by Adsorption on Calcium Oxide Two New Pentacyclic Triterpenoids, an Alkaloid and a Long-chain Fatty Acid from Albizia Coriaria (Welw ex. Oliver)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1