Evaluation of Remote Sensing and Meteorological parameters for Yield Prediction of Sugarcane (Saccharum officinarum L.) Crop

IF 1 4区 生物学 Q3 BIOLOGY Brazilian Archives of Biology and Technology Pub Date : 2023-07-17 DOI:10.1590/1678-4324-2023220781
P. Saini, Bharti Nagpal, Puneet Garg, Sachin Kumar
{"title":"Evaluation of Remote Sensing and Meteorological parameters for Yield Prediction of Sugarcane (Saccharum officinarum L.) Crop","authors":"P. Saini, Bharti Nagpal, Puneet Garg, Sachin Kumar","doi":"10.1590/1678-4324-2023220781","DOIUrl":null,"url":null,"abstract":": In the Agriculture sector, the farmers need a reliable estimation for pre-harvest crop yield prediction to decide their import-export policies . The present work aims to assess the impact of remote sensing-based derived products with Climate data on the accuracy of a prediction model for the sugarcane yield. The regression method was used to develop an empirical model based on VCI, Historical Sugarcane Yield, and Climatic Parameters of 75 districts of six major sugar-producing states of India. The MOD13Q1 product of MODIS on Board Terra Satellite at 16-day intervals was accessed during the growing season of sugarcane crop with 36 meteorological parameters for experimentation. The accuracy of the model was evaluated using R 2 , Root Mean square Metric (RMSE), Mean Absolute Error (MAE), and mean square error (MSE). The preliminary results concluded that the proposed methodology achieved the highest accuracy with (R 2 =0.95, MAE=5.18, MSE=34.5, RMSE=5.87). The conclusion of the study highlighted that the coefficient of determination can be improved significantly by incorporating maximum and minimum temperature parameters with Remote sensing derived vegetation indices for the sugarcane yield.","PeriodicalId":9169,"journal":{"name":"Brazilian Archives of Biology and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Archives of Biology and Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4324-2023220781","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

: In the Agriculture sector, the farmers need a reliable estimation for pre-harvest crop yield prediction to decide their import-export policies . The present work aims to assess the impact of remote sensing-based derived products with Climate data on the accuracy of a prediction model for the sugarcane yield. The regression method was used to develop an empirical model based on VCI, Historical Sugarcane Yield, and Climatic Parameters of 75 districts of six major sugar-producing states of India. The MOD13Q1 product of MODIS on Board Terra Satellite at 16-day intervals was accessed during the growing season of sugarcane crop with 36 meteorological parameters for experimentation. The accuracy of the model was evaluated using R 2 , Root Mean square Metric (RMSE), Mean Absolute Error (MAE), and mean square error (MSE). The preliminary results concluded that the proposed methodology achieved the highest accuracy with (R 2 =0.95, MAE=5.18, MSE=34.5, RMSE=5.87). The conclusion of the study highlighted that the coefficient of determination can be improved significantly by incorporating maximum and minimum temperature parameters with Remote sensing derived vegetation indices for the sugarcane yield.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘蔗产量预测的遥感与气象参数评价作物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
116
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Societal Factors and Teen Dating Violence: a Scoping Review. Multi-objective Sand Piper Optimization Based Clustering with Multihop Routing Technique for IoT Assisted WSN Estimation of Genetic Variance Components for Corn Ear Rot in RIL Populations Derived from Three Biparental Crosses Oral Yeast Load and Species of Young Individuals Aged 18-25 Diallel Analysis of Dry Bean Varieties for Seed Yield and Important Traits for Calcareous Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1