Computational Challenges in Sampling and Representation of Uncertain Reaction Kinetics in Large Dimensions

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal for Uncertainty Quantification Pub Date : 2021-01-01 DOI:10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2021035691
Saja Almohammadi, O. Maître, O. Knio
{"title":"Computational Challenges in Sampling and Representation of Uncertain Reaction Kinetics in Large Dimensions","authors":"Saja Almohammadi, O. Maître, O. Knio","doi":"10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2021035691","DOIUrl":null,"url":null,"abstract":"This work focuses on constructing functional representations of quantities of interest (QoIs) of an uncertain system in high dimension. Attention is focused on the ignition delay time of an iso-octane air mixture, using a detailed chemical mechanism with 3,811 elementary reactions. Uncertainty in all reaction rates is directly accounted for using associated uncertainty factors, assuming independent log-uniform priors. A Latin hypercube sample (LHS) of the ignition delay times was first generated, and the resulting database was then exploited to assess the possibility of constructing polynomial chaos (PC) representations in terms of the canonical random variables parametrizing the uncertain rates. We explored two avenues, namely sparse regression (SR) using LASSO, and a coordinate transform (CT) approach. Preconditioned variants of both approaches were also considered, namely using the logarithm of the ignition delay time as QoI. Both approaches resulted in representations of the ignition delay with similar representation errors. However, the CT approach was able to reproduce better the empirical distribution of the underlying LHS ensemble, and also preserved the positivity of the ignition delay time. When preconditioned representations were considered, however, similar performances were obtained using CT and SR representations. The results also revealed that both the CT and SR representations yield consistent global sensitivity estimates. The results were finally used to test a reduced dimension representation, and to outline potential extensions of the work.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2021035691","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This work focuses on constructing functional representations of quantities of interest (QoIs) of an uncertain system in high dimension. Attention is focused on the ignition delay time of an iso-octane air mixture, using a detailed chemical mechanism with 3,811 elementary reactions. Uncertainty in all reaction rates is directly accounted for using associated uncertainty factors, assuming independent log-uniform priors. A Latin hypercube sample (LHS) of the ignition delay times was first generated, and the resulting database was then exploited to assess the possibility of constructing polynomial chaos (PC) representations in terms of the canonical random variables parametrizing the uncertain rates. We explored two avenues, namely sparse regression (SR) using LASSO, and a coordinate transform (CT) approach. Preconditioned variants of both approaches were also considered, namely using the logarithm of the ignition delay time as QoI. Both approaches resulted in representations of the ignition delay with similar representation errors. However, the CT approach was able to reproduce better the empirical distribution of the underlying LHS ensemble, and also preserved the positivity of the ignition delay time. When preconditioned representations were considered, however, similar performances were obtained using CT and SR representations. The results also revealed that both the CT and SR representations yield consistent global sensitivity estimates. The results were finally used to test a reduced dimension representation, and to outline potential extensions of the work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大尺度不确定反应动力学的采样和表示中的计算挑战
本研究的重点是在高维上构造不确定系统的兴趣量的函数表示。利用3811个基本反应的详细化学机理,研究了异辛烷空气混合物的点火延迟时间。所有反应速率的不确定度直接用相关的不确定因素计算,假设独立对数均匀先验。首先生成了点火延迟时间的拉丁超立方体样本(LHS),然后利用该数据库评估了用标准随机变量参数化不确定率来构造多项式混沌(PC)表示的可能性。我们探索了两种途径,即使用LASSO的稀疏回归(SR)和坐标变换(CT)方法。还考虑了两种方法的预条件变量,即使用点火延迟时间的对数作为qi。这两种方法都导致了具有相似表示误差的点火延迟表示。然而,CT方法能够更好地再现底层LHS系综的经验分布,并且还保留了点火延迟时间的正性。然而,当考虑预条件表征时,使用CT和SR表征获得了类似的性能。结果还显示,CT和SR表示产生一致的全局敏感性估计。结果最后用于测试降维表示,并概述了工作的潜在扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
期刊最新文献
Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory Sobol’ sensitivity indices– A Machine Learning approach using the Dynamic Adaptive Variances Estimator with Given Data Extremes of vector-valued processes by finite dimensional models A novel probabilistic transfer learning strategy for polynomial regression Variance-based sensitivity of Bayesian inverse problems to the prior distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1