Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIRmode

Jing Chen, Ruifeng Ding
{"title":"Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIRmode","authors":"Jing Chen, Ruifeng Ding","doi":"10.1631/jzus.C1300072","DOIUrl":null,"url":null,"abstract":"Based on the work in Ding and Ding (2008), we develop a modified stochastic gradient (SG) parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model. We simplify the complex dual-rate Box-Jenkins model to two finite impulse response (FIR) models, present an auxiliary model to estimate the missing outputs and the unknown noise variables, and compute all the unknown parameters of the system with colored noises. Simulation results indicate that the proposed method is effective.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"147-152"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300072","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Based on the work in Ding and Ding (2008), we develop a modified stochastic gradient (SG) parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model. We simplify the complex dual-rate Box-Jenkins model to two finite impulse response (FIR) models, present an auxiliary model to estimate the missing outputs and the unknown noise variables, and compute all the unknown parameters of the system with colored noises. Simulation results indicate that the proposed method is effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于辅助模型和FIRmode的双速率Box-Jenkins模型随机梯度算法
在Ding and Ding(2008)的基础上,我们利用辅助模型开发了一种改进的双速率Box-Jenkins模型的随机梯度(SG)参数估计算法。我们将复杂的双速率Box-Jenkins模型简化为两个有限脉冲响应(FIR)模型,提出了一个辅助模型来估计缺失输出和未知噪声变量,并计算了带有彩色噪声的系统的所有未知参数。仿真结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
期刊最新文献
Supply chain network design under uncertainty with new insights from contracts Degree elevation of unified and extended spline curves A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology Optimizing urban traffic control using a rational agent Speech enhancement with a GSC-like structure employing sparse coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1