Coordinated standoff tracking of moving targets using differential geometry

Zhi-qiang Song, Huaxiong Li, Chunlin Chen, Xianzhong Zhou, Feng Xu
{"title":"Coordinated standoff tracking of moving targets using differential geometry","authors":"Zhi-qiang Song, Huaxiong Li, Chunlin Chen, Xianzhong Zhou, Feng Xu","doi":"10.1631/jzus.C1300287","DOIUrl":null,"url":null,"abstract":"This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"284 - 292"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300287","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-Science C-Computers & Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.C1300287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于微分几何的运动目标协调对峙跟踪
针对协调对峙跟踪问题,利用微分几何方法提出了一种针对运动目标的制导律。首先给出了无人机与目标之间的几何关系,得到了无人机与目标速度比大于1时的对峙跟踪的收敛解。然后,使用收敛解将UA引导到对峙跟踪几何上。我们通过在相关算法中加入导数项,提出了一种改进的制导律。为了保持多个ua的相位角差,我们在相关控制律中增加了二阶导数项。仿真结果验证了该方法的可行性和性能。该算法在距离和相位角差方面具有简单、稳定的特点,可以实现多个无人机的协调控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.66667 months
期刊最新文献
Supply chain network design under uncertainty with new insights from contracts Degree elevation of unified and extended spline curves A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology Optimizing urban traffic control using a rational agent Speech enhancement with a GSC-like structure employing sparse coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1