Dynamical analysis of sliding connections with mesh independent roughness by a total Lagrangian FEM

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Latin American Journal of Solids and Structures Pub Date : 2022-01-01 DOI:10.1590/1679-78257295
Tiago Morkis Siqueira, Edwin Alexander Morantes Rodríguez, H. B. Coda
{"title":"Dynamical analysis of sliding connections with mesh independent roughness by a total Lagrangian FEM","authors":"Tiago Morkis Siqueira, Edwin Alexander Morantes Rodríguez, H. B. Coda","doi":"10.1590/1679-78257295","DOIUrl":null,"url":null,"abstract":"Sliding connections are present in several applications on the mechanics, civil and aerospace industries. A framework consisting on an accurate and stable formulation to describe the dynamics of flexible systems with sliding connections is developed. The total Lagrangian positional approach of the Finite Element Method is employed using 2D solid and frame elements to discretize bodies and connections. This allows a wide range of applications, particularly the local modelling of joints. The proposed formulation includes roughness along sliding paths independent from the finite element geometry discretization. Following variational principles, Lagrange multipliers are used to impose sliding constraints on the equations of motion. A direct time integration is performed by the generalized-α method and its stability in the present finite deformation context is evaluated. The resulting nonlinear equations are solved by the Newton-Raphson method. Examples are presented where the proposed framework is evaluated regarding its dynamical behavior and to solve practical scenarios for which sliding modelling is a necessity.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Sliding connections are present in several applications on the mechanics, civil and aerospace industries. A framework consisting on an accurate and stable formulation to describe the dynamics of flexible systems with sliding connections is developed. The total Lagrangian positional approach of the Finite Element Method is employed using 2D solid and frame elements to discretize bodies and connections. This allows a wide range of applications, particularly the local modelling of joints. The proposed formulation includes roughness along sliding paths independent from the finite element geometry discretization. Following variational principles, Lagrange multipliers are used to impose sliding constraints on the equations of motion. A direct time integration is performed by the generalized-α method and its stability in the present finite deformation context is evaluated. The resulting nonlinear equations are solved by the Newton-Raphson method. Examples are presented where the proposed framework is evaluated regarding its dynamical behavior and to solve practical scenarios for which sliding modelling is a necessity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全拉格朗日有限元法的网格无关粗糙度滑动连接动力学分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊最新文献
Reliability-based design of reinforced concrete pipes to satisfy the TEBT Innovative Approach for Enhancing GLULAM Performance with Reinforcing Steel Bars: A BESO-based Study Sequential method of topological optimization in multi-component systems Coupling Modal Analysis with the BEM for the Transient Response of Bar Structures Interacting with Three-Dimensional Soil Profiles Experimental and Numerical Study on Ballistic Impact Response of Vehicle Tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1