Reactive oxygen species in the progression and treatment of malignant mesothelioma

Ava Cote, T. Messier, B. Cunniff
{"title":"Reactive oxygen species in the progression and treatment of malignant mesothelioma","authors":"Ava Cote, T. Messier, B. Cunniff","doi":"10.20517/2394-4722.2022.41","DOIUrl":null,"url":null,"abstract":"Malignant mesothelioma (MM) is an aggressive cancer that affects the pleural and peritoneal mesothelial lining of the lungs and abdomen. Survival rates for patients with MM remain extremely low and effective treatments are limited. MM tumors harbor both genotypic and phenotypic features that indicate MM tumor cells are under increased oxidative stress, similar to other aggressive cancers. This increased oxidative stress in MM cells supports aggressive growth while providing a therapeutic vulnerability exploitable by redox-modulating compounds. MM tumor cells also exhibit altered mitochondrial structure and function that contribute to the disease through perturbations in metabolism and reactive oxygen species (ROS) production and metabolism. Targeting the altered redox status in cancer through increasing cellular ROS levels directly or inhibiting cellular antioxidant pathways and disrupting ROS scavenging mechanisms has become an exciting area for therapeutic intervention. This review discusses ROS sources and signaling, mitochondrial structure and function and targeting mitochondria ROS as a therapeutic approach for the treatment of MM.","PeriodicalId":15167,"journal":{"name":"Journal of Cancer Metastasis and Treatment","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Metastasis and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/2394-4722.2022.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malignant mesothelioma (MM) is an aggressive cancer that affects the pleural and peritoneal mesothelial lining of the lungs and abdomen. Survival rates for patients with MM remain extremely low and effective treatments are limited. MM tumors harbor both genotypic and phenotypic features that indicate MM tumor cells are under increased oxidative stress, similar to other aggressive cancers. This increased oxidative stress in MM cells supports aggressive growth while providing a therapeutic vulnerability exploitable by redox-modulating compounds. MM tumor cells also exhibit altered mitochondrial structure and function that contribute to the disease through perturbations in metabolism and reactive oxygen species (ROS) production and metabolism. Targeting the altered redox status in cancer through increasing cellular ROS levels directly or inhibiting cellular antioxidant pathways and disrupting ROS scavenging mechanisms has become an exciting area for therapeutic intervention. This review discusses ROS sources and signaling, mitochondrial structure and function and targeting mitochondria ROS as a therapeutic approach for the treatment of MM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活性氧在恶性间皮瘤进展和治疗中的作用
恶性间皮瘤(MM)是一种侵袭性癌症,影响肺和腹部的胸膜和腹膜间皮瘤。MM患者的生存率仍然极低,有效的治疗方法有限。MM肿瘤的基因型和表型特征表明,MM肿瘤细胞处于氧化应激增加的状态,与其他侵袭性癌症相似。这种增加的氧化应激在MM细胞中支持侵略性生长,同时提供了氧化还原调节化合物可利用的治疗脆弱性。MM肿瘤细胞也表现出线粒体结构和功能的改变,通过代谢和活性氧(ROS)产生和代谢的扰动导致疾病。通过直接增加细胞ROS水平或抑制细胞抗氧化途径和破坏ROS清除机制来靶向癌症中氧化还原状态的改变已成为治疗干预的一个令人兴奋的领域。本文综述了ROS的来源和信号,线粒体结构和功能以及靶向线粒体ROS作为治疗MM的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
5.30%
发文量
460
期刊最新文献
Research progress of intestinal microbiota in targeted therapy and immunotherapy of colorectal cancer Editorial on “Chinese expert consensus on the clinical practice of non-small cell lung cancer fusion gene detection based on RNA-based NGS” (2023 edition) Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections Mechanical force-mediated interactions between cancer cells and fibroblasts and their role in the progression of hepatocellular carcinoma Fast-tracking drug development with biomarkers and companion diagnostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1