Regional deposited dose in the human respiratory tract using different particulate metrics

E. Chalvatzaki, S. Chatoutsidou, M. Lazaridis
{"title":"Regional deposited dose in the human respiratory tract using different particulate metrics","authors":"E. Chalvatzaki, S. Chatoutsidou, M. Lazaridis","doi":"10.20517/jeea.2022.16","DOIUrl":null,"url":null,"abstract":"The objective of the current study was to calculate the deposited dose rate in the human respiratory tract arising from particle number (PN) and particle mass (PM) measurements. A main objective was the investigation of deposition pattern and characteristics of the two metrics in the human respiratory tract. The dose rate was estimated for residents at a suburban background location (Chania, Greece). The total dose rate showed two peaks, one in the morning (1.6 × 109 particles/h at 7:00-8:00) and the other one at night (2.1 × 109 particles/h at 21:00-22:00), during the warm period, while the cold period showed two peaks, morning (2.0 × 109 particles/h at 9:00-10:00) and afternoon (3.6 × 109 particles/h at 18:00-19:00). The peaks during the warm period were associated with traffic emissions, whereas the peaks during the cold period were associated with both heating and traffic emissions. A higher dose rate of PN10 was found in the alveolar region while for PM10 it was found in the extrathoracic region. These findings are linked with increased contribution of ultrafine and coarse particles to PN10 (65%-78% and 54%-62% for cold and warm periods, respectively) and PM10 (63% and 55% for cold and warm periods, respectively) concentrations, respectively. The current study showed the importance to use both number and mass aerosol metrics for determining the human exposure and regional dose and their related health effects. The novelty of the current study is the simultaneous measurements of the two particles metrics and the full particle size distributions to make accurate estimates of regional deposited dose.","PeriodicalId":73738,"journal":{"name":"Journal of environmental exposure assessment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental exposure assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jeea.2022.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of the current study was to calculate the deposited dose rate in the human respiratory tract arising from particle number (PN) and particle mass (PM) measurements. A main objective was the investigation of deposition pattern and characteristics of the two metrics in the human respiratory tract. The dose rate was estimated for residents at a suburban background location (Chania, Greece). The total dose rate showed two peaks, one in the morning (1.6 × 109 particles/h at 7:00-8:00) and the other one at night (2.1 × 109 particles/h at 21:00-22:00), during the warm period, while the cold period showed two peaks, morning (2.0 × 109 particles/h at 9:00-10:00) and afternoon (3.6 × 109 particles/h at 18:00-19:00). The peaks during the warm period were associated with traffic emissions, whereas the peaks during the cold period were associated with both heating and traffic emissions. A higher dose rate of PN10 was found in the alveolar region while for PM10 it was found in the extrathoracic region. These findings are linked with increased contribution of ultrafine and coarse particles to PN10 (65%-78% and 54%-62% for cold and warm periods, respectively) and PM10 (63% and 55% for cold and warm periods, respectively) concentrations, respectively. The current study showed the importance to use both number and mass aerosol metrics for determining the human exposure and regional dose and their related health effects. The novelty of the current study is the simultaneous measurements of the two particles metrics and the full particle size distributions to make accurate estimates of regional deposited dose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不同的微粒计量方法测定人体呼吸道的区域沉积剂量
本研究的目的是计算由颗粒数(PN)和颗粒质量(PM)测量引起的人体呼吸道沉积剂量率。主要目的是研究这两种指标在人呼吸道中的沉积模式和特征。对郊区背景地点(希腊哈尼亚)居民的剂量率进行了估计。总剂量率在暖期出现两个峰,分别为早晨(7:00-8:00为1.6 × 109颗粒/h)和夜间(21:00-22:00为2.1 × 109颗粒/h),冷期出现两个峰,分别为上午(9:00-10:00为2.0 × 109颗粒/h)和下午(18:00-19:00为3.6 × 109颗粒/h)。暖期峰值与交通排放有关,冷期峰值与供暖和交通排放均有关。PN10在肺泡区剂量率较高,PM10在胸外区剂量率较高。这些发现与超细颗粒和粗颗粒对PN10(在寒冷和温暖时期分别为65%-78%和54%-62%)和PM10(在寒冷和温暖时期分别为63%和55%)浓度的贡献增加有关。目前的研究表明,使用数量和质量气溶胶指标来确定人体暴露和区域剂量及其相关的健康影响的重要性。当前研究的新颖之处在于同时测量两种粒子度量和全粒径分布,以准确估计区域沉积剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Airborne concentrations of volatile organic compounds (VOCs) in hair salons primarily serving women of color Legacy halogenated flame retardants in Canadian human milk from the maternal-infant research on environmental chemicals study Bioaccumulation, transfer, and impacts of microplastics in aquatic food chains In vitro estimation of oral bioaccessibility of brominated flame retardants in indoor dust by fasted and fed physiologically extraction test Per- and polyfluoroalkyl substances (PFAS) in powdered infant formula: potential exposures and health risks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1